Wang Hao,Cao Xiaozhou*,Xue Xiangxin.Research progress on electrodeposition of tin and tin alloys coatings in eutectic solvents[J].Plating & Finishing,2023,(1):56-61.[doi:10.3969/j.issn.1001-3849.2023.01.009]
低共熔溶剂中电沉积锡及锡合金镀层的研究进展
- Title:
- Research progress on electrodeposition of tin and tin alloys coatings in eutectic solvents
- Keywords:
- electrodeposition ; deep eutectic solvent ; choline chloride ; tin ; coating
- 分类号:
- TQ153.11
- 文献标志码:
- A
- 摘要:
- 低共熔溶剂作为一种新型绿色电镀液,有着电化学窗口宽、电导率高等优异的电化学性能。近年来常作为电沉积制备锡及锡合金的备选镀液,在电镀领域有着广泛的应用前景。本文综述了以氯化胆碱基低共熔溶剂为电镀液,采用电沉积法制备金属锡及锡二元、三元合金镀层的最新研究进展,介绍了温度、浓度、添加剂等因素对电沉积制备锡及锡合金镀层的影响,并对现存问题进行了讨论。
- Abstract:
- : As a new type of green electroplating solution , eutectic solvent has excellent electrochemical performance such as wide electrochemical window and high conductivity. In recent years , it is often used as an alternative plating solution for the preparation of tin and tin alloys by electrodeposition , and has a wide range of application prospects in the field of electroplating. The latest research progress in the preparation of metal tin and tin binary and ternary alloy coatings using the choline chloride-based eutectic solvent as the electroplating solution was reviewed in this article. The effects of temperature , concentration , additives and other factors on the preparation of tin and tin alloy coatings by electrodeposition were introduced , and the existing problems were discussed.
参考文献/References:
[1] Winnicki M, Baszczuk A, Rutkowska-Gorczyca M, et al. Corrosion resistance of tin coatings deposited by cold spraying[J]. Surface Engineering, 2016, 32(9): 691-700.
[2] Walsh F C, Low C T J. A review of developments in the electrodeposition of tin[J]. Surface and Coatings Technology, 2016, 288: 79-94.
[3] Ye B, Kim S. Study on the thermal treatment conditions for fabricating open-cell structure Cu-Sn alloy foams[J]. Journal of Alloys and Compounds, 2021, 853: 157006.
[4] Zhang J, Ma X, Zhang J, et al. Electrodeposition of Cu-Zn alloy from EMImTfO ionic liquid/ethanol mixtures for replacing the cyanide zincate layer on Al alloy[J]. Journal of Alloys and Compounds, 2019, 806: 79-88.
[5] Sun J, Ming T, Qian H, et al. Preparation of black Cu-Sn alloy with single phase composition by electrodeposition method in 1-butyl-3-methylimidazolium chloride ionic liquids[J]. Materials Chemistry and Physics, 2018, 219: 421-424.
[6] Romero A, Santos A, Tojo J, et al. Toxicity and biodegradability of imidazolium ionic liquids[J]. Journal of Hazardous Materials, 2008, 151(1): 268-273.
[7] Garcia M T, Gathergood N, Scammells P J. Biodegradable ionic liquids: part II. Effect of the anion and toxicology[J]. Green Chemistry, 2005, 7(1): 9-14.
[8] Ranke J, M?lter K, Stock F, et al. Biological effects of imidazolium ionic liquids with varying chain lengths in acute Vibrio fischeri and WST-1 cell viability assays[J]. Ecotoxicology and Environmental Safety, 2004, 58(3): 396-404.
[9] Salomé S, Pereira N M, Ferreira E S, et al. Tin electrodeposition from choline chloride based solvent: Influence of the hydrogen bond donors[J]. Journal of Electroanalytical Chemistry, 2013(703): 86-87.
[10] Ghosh S, Ryder, Roy S. Electrochemical and transport properties of ethaline containing copper and tin chloride[J]. Transactions of the IMF, 2014, 92(1): 41-46.
[11] Ghosh S, Roy S. Characterization of tin films synthesized from ethaline deep eutectic solvent[J]. Materials Science & Engineering B, 2014, 190: 104-110.
[12] Cao X Z, Xu L L, Wang C, et al. Electrochemical behavior and electrodeposition of Sn coating from choline chloride – urea deep eutectic solvents[J]. Coatings, 2020, 10(12): 1154.
[13] Vieira L, Burt J, Richardson P W, et al. Tin, Bismuth, and Tin – Bismuth alloy electrodeposition from chlorometalate salts in deep eutectic solvents[J]. ChemistryOpen, 2017, 6(3): 393-401.
[14] Wang Z, Ru J, Hua Y, et al. Electrodeposition of Sn powders with pyramid chain and dendrite structures in deep eutectic solvent: roles of current density and SnCl 2 concentration[J]. Journal of Solid State Electrochemistry, 2021, 25(3): 1111-1120.
[15] Wang Z, Ru J, Hua Y, et al. Morphology-controlled preparation of Sn powders by electrodeposition in deep eutectic solvent as anodes for lithium ion batteries[J]. Journal of the Electrochemical Society, 2020, 167(8): 082504.
[16] Alesary H F, Khudhair A F, Rfaish S Y, et al. Effect of sodium bromide on the electrodeposition of Sn, Cu, Ag and Ni from a deep eutectic solvent-based ionic liquid[J]. International Journal of Electrochemical Science, 2019, 14: 7716-7132.
[17] Pereira N M, Pereira C M, Silva A F. The effect of complex agents on the electrodeposition of tin from deep eutectic solvents[J]. Journal of The Electrochemical Society, 2012, 1(2): 5-7.
[18] Abbott A P, Alhaji A I, Ryder K S, et al. Electrodeposition of copper-tin alloys using deep eutectic solvents[J]. The International Journal of Surface Engineering and Coatings, 2016, 94(2): 104-113.
[19] Ghosh S, Roy S. Codeposition of Cu-Sn from ethaline deep eutectic solvent[J]. Electrochimica Acta, 2015, 183: 27-36.
[20] Abbott A P, Capper G, McKenzie K J, et al. Electrodeposition of zinc-tin alloys from deep eutectic solvents based on choline chloride[J]. Journal of Electroanalytical Chemistry, 2007, 599(2): 288-294.
[21] Fashu S, Gu C D, Zhang J L, et al. Electrodeposition and characterization of Zn-Sn alloy coatings from a deep eutectic solvent based on choline chloride for corrosion protection[J]. Surface and Interface Analysis, 2015, 47(3): 403-412.
[22] Pereira N M, Salomé S, Pereira C M, et al. Zn-Sn electrodeposition from deep eutectic solvents containing EDTA, HEDTA, and Idranal VII[J]. Journal of Applied Electrochemistry, 2012, 42(8): 561-571.
[23] Alesary H F, Ismail H K, Shiltagh N M, et al. Effects of additives on the electrodeposition of ZnSn alloys from choline chloride/ethylene glycol-based deep eutectic solvent[J]. Journal of Electroanalytical Chemistry, 2020, 874: 114517.
[24] Brand?o A T S C, Anicai L, Lazar O A, et al. Electrodeposition of Sn and Sn Composites with carbon baterials using choline chloride-based ionic liquids[J]. Coatings, 2019, 9(12): 798.
[25] Zhang J L, Gu C D, Fashu S, et al. Enhanced corrosion resistance of Co-Sn alloy coating with a self-organized layered structure electrodeposited from deep eutectic solvent[J]. Journal of the Electrochemical Society, 2015, 162 (1): 1-8.
[26] Pereira N M, Pereira C M, Araújo J P, et al. Electrodeposition of Mn and Mn-Sn alloy using choline chloride-based Ionic Liquids[J]. Journal of the Electrochemical Society, 2017, 164(7): 486-492.
[27] Rosoiu S P, Pantazi A G, Petica A, et al. Comparative study of Ni-Sn alloys electrodeposited from choline chloride-based ionic liquids in direct and pulsed current[J]. Coatings, 2019, 9(12): 801.
[28] Anicai L, Petica A, Costovici S, et al. Electrodeposition of Sn-In alloys involving deep eutectic solvents[J]. Coatings, 2019, 9(12): 800.
[29] Rao S, Zou X, Wang S, et al. Electrodeposition of porous Sn-Ni-Cu alloy anode for lithium-ion batteries from nickel matte in deep eutectic solvents[J]. Journal of the Electrochemical Society, 2019, 166 (10): 427-434.
[30] Azmi S, Pezzato L, Sturaro M, et al. A green and low-cost synthetic approach based on deep eutectic choline-urea solvent toward synthesis of CZTS thin films[J]. Ionics, 2019, 25(6): 2755-2761.
[31] Shi T, Zou X, Wang S, et al. Electrodeposition of Sn-Co-Ni and Sn-Co-Zn alloy coatings on copper substrate in a deep eutectic solvent and their characterization[J]. The International Journal of Electrochemical Society, 2020, 15: 7493-7507.
[32] Fashu S, Mudzingwa L, Khan R, et al. Electrodeposition of high corrosion resistant Ni-Sn-P alloy coatings from an ionic liquid based on choline chloride[J]. The International Journal of Surface Engineering and Coatings, 2018, 96(1): 20-26.
[33] Fashu S,Khan R,Zulfiqar S. Ternary Zn-Mn-Sn alloy electrodeposition from an ionic liquid based on choline chloride[J]. The International Journal of Surface Engineering and Coatings, 2017, 95(4): 217-225.
[34] Fashu S, Khan R. Electrodeposition of ternary Zn-Ni-Sn alloys from an ionic liquid based on choline chloride and their characterisation[J]. The International Journal of Surface Engineering and Coatings, 2016, 94(5): 237-245.
[35] Vijayakumar J, Mohan S, Kumar S A, et al. Electrodeposition of Ni-Co-Sn alloy from choline chloride-based deep eutectic solvent and characterization as cathode for hydrogen evolution in alkaline solution[J]. International Journal of Hydrogen Energy, 2013, 38(25): 10208-10214.
相似文献/References:
[1]张冰怡,张莎莎*,姚正军,等.电沉积Ni-W纳米晶镀层制备与显微硬度研究[J].电镀与精饰,2019,(8):20.[doi:10.3969/j.issn.1001-3849.2019.08.005]
ZHANG Bingyi,ZHANG Shasha*,YAO Zhengjun,et al.Preparation and Microhardness of Electrodeposited Ni-W Nanocrystalline Coatings[J].Plating & Finishing,2019,(1):20.[doi:10.3969/j.issn.1001-3849.2019.08.005]
[2]雷同鑫,鞠 辉,张长科,等.电镀Ni-W-P合金在钻杆接头上的应用[J].电镀与精饰,2019,(10):38.[doi:10.3969/j.issn.1001-3849.2019.10.009]
LEI Tongxin,JU Hui,ZHANG Changke,et al.Application of Ni-W-P Alloy Prepared by Electroplating to Tool Joints[J].Plating & Finishing,2019,(1):38.[doi:10.3969/j.issn.1001-3849.2019.10.009]
[3]李晓峰*,孟 芳,董会超,等.电沉积法制备掺铋金属锌及其性能表征[J].电镀与精饰,2020,(1):12.[doi:10.3969/j.issn.1001-3849.2020.01.003]
LI Xiaofeng*,MENG Fang,DONG Huichao,et al.Electrodeposited Preparation of Bi-Doped Metal Zinc and Its Performance Characterization[J].Plating & Finishing,2020,(1):12.[doi:10.3969/j.issn.1001-3849.2020.01.003]
[4]张永霞,王 玫,方 华*,等.Co3O4/碳纳米管复合膜的超级电容器性能[J].电镀与精饰,2020,(2):1.[doi:10.3969/j.issn.1001-3849.2020.02.001]
ZHANG Yongxia,WANG Mei,FANG Hua*,et al.Co3O4/Carbon Nanotube Composite Film for Supercapacitor and Its Performances[J].Plating & Finishing,2020,(1):1.[doi:10.3969/j.issn.1001-3849.2020.02.001]
[5]侯珂珂,陈新华,张万强,等.电沉积法制备仿生超疏水滤网及其油水分离性能[J].电镀与精饰,2020,(4):1.[doi:10.3969/j.issn.1001-3849.2020.04.0010]
HOU Keke,CHEN Xinhua,ZHANG Wanqiang,et al.Preparation of Biomimetic Superhydrophobic Filter Screen by Electrodeposition and the Oil-Water Separation Performance[J].Plating & Finishing,2020,(1):1.[doi:10.3969/j.issn.1001-3849.2020.04.0010]
[6]肖成龙,梁世雍,于兆勤*.可控阵列微柱超疏水表面实验研究[J].电镀与精饰,2020,(7):27.[doi:10.3969/j.issn.1001-3849.2020.07.0060]
XIAO Chenglong,LIANG Shiyong,YU Zhaoqin*.Experimental Study on Superhydrophobic Surface of Controllable Array Microcolumns[J].Plating & Finishing,2020,(1):27.[doi:10.3969/j.issn.1001-3849.2020.07.0060]
[7]徐 超,王淼宇,周建波,等.电沉积Ni-Mo-Fe-La合金析氢电极的工艺研究[J].电镀与精饰,2020,(8):7.[doi:10.3969/j.issn.1001-3849.2020.08.0020]
XU Chao,WANG Miaoyu,ZHOU Jianbo,et al.Study on Electrodeposition Process of Ni-Mo-Fe-La Alloy Hydrogen Evolution Electrode[J].Plating & Finishing,2020,(1):7.[doi:10.3969/j.issn.1001-3849.2020.08.0020]
[8]高 辉,刘伟杰*.2A12铝合金电沉积Ni-Co-MoS2复合镀层的耐磨性能研究[J].电镀与精饰,2020,(10):1.[doi:10.3969/j.issn.1001-3849.2020.10.0010]
GAO Hui,LIU Weijie*.Research on Wear Resistance of Ni-Co-MoS2 Composite Coating Electrodeposited on 2A12 Aluminium Alloy[J].Plating & Finishing,2020,(1):1.[doi:10.3969/j.issn.1001-3849.2020.10.0010]
[9]王 羽,刘励昀,杜荣斌*,等.添加剂MPS、DDAC、Cl-对铜箔电沉积的影响[J].电镀与精饰,2021,(5):1.[doi:10.3969/j.issn.1001-3849.2021.05.001]
WANG Yu,LIU Liyun,DU Rongbin*,et al.Effects of Additives MPS, DDAC and Cl- on the Copper Foil[J].Plating & Finishing,2021,(1):1.[doi:10.3969/j.issn.1001-3849.2021.05.001]
[10]杨惠良*.硫酸盐镀液中紫铜电沉积Ni-Co/WC复合镀层的工艺条件优化[J].电镀与精饰,2021,(6):30.[doi:10.3969/j.issn.1001-3849.2021.06.007]
YANG Huiliang*.Optimization of Process Conditions for Electrodeposition of Ni-Co/WC Composite Coatings on Red Copper from Sulfate Bath[J].Plating & Finishing,2021,(1):30.[doi:10.3969/j.issn.1001-3849.2021.06.007]
[11]孙海静,杨 帅,王 贺,等.ChCl-Urea低共熔溶剂中电沉积锌的工艺研究[J].电镀与精饰,2021,(11):23.[doi:10.3969/j.issn.1001-3849.2021.11.005]
SUN Haijing,YANG Shuai,WANG He,et al.Study on the Technology of Zinc Electrodeposition in ChCl-Urea Deep Eutectic Solvent[J].Plating & Finishing,2021,(1):23.[doi:10.3969/j.issn.1001-3849.2021.11.005]
备注/Memo
收稿日期: 2021-04-09 修回日期: 2021-05-22 作者简介: 王昊( 1995 ―),男,硕士研究生, email : wh15940639747@163.com * 通信作者: 曹晓舟, email ; caoxz@smm.neu.edu.cn 基金项目: 国家自然科学基金资助项目( 51204043 )