Zhang Meixia,Wu Wangping,Wang Qinqin*.Electrodeposition and hydrogen evolution performance of Ir-Ni thin film electrocatalysts[J].Plating & Finishing,2024,(12):136-144.
电沉积铱镍薄膜电催化剂及其析氢性能
- Title:
- Electrodeposition and hydrogen evolution performance of Ir-Ni thin film electrocatalysts
- Keywords:
- iridium-nickel film; electrodeposition; electrocatalyst; hydrogen evolution reaction; copper foam
- 分类号:
- TG176
- 文献标志码:
- A
- 摘要:
- 采用电沉积技术在泡沫铜上制备了铱镍(Ir-Ni)合金薄膜,并利用泡沫铜(CF)的三维多孔结构和Ir-Ni合金的优良催化及抗腐蚀性来提升薄膜的电催化析氢反应(HER)性能。本文在恒电流条件下通过电沉积技术在泡沫铜上制备了Ir-Ni薄膜,并与泡沫铜上电沉积制备的纯Ir和纯Ni薄膜进行了比较。通过扫描电子显微镜(SEM)、能谱仪(EDS)和X射线光电子能谱仪(XPS)分析了薄膜的表面形貌和化学成分,采用线性扫描伏安法(LSV)测试了其电催化性能。结果表明:Ir-Ni薄膜成功附着在具有多孔结构和空心形貌的泡沫铜上,其表面比纯Ni薄膜粗糙。薄膜主要由金属态Ir组成,含量为(80.0±1.2)at.%。Ir-Ni/CF表现出出色的HER性能,仅需要60 mV的过电位就能获得10 mA·cm–2电流密度,塔菲尔斜率(Tafel)低至40 mV·dec–1,交换电流密度j0为0.657 mA·cm–2,达到了商用Pt/C催化剂的87.6%。并且在碱性溶液中,长时间的析氢实验显示Ir-Ni/CF具有良好的电催化稳定性。相比于Ir/CF和Ni/CF,Ir-Ni/CF的电催化活性显著提升,这主要归因于两方面的因素:一方面是薄膜相对粗糙的表面增加了活性中心的表面积,另一方面是Ir与Ni在析氢反应中的协同效应。
- Abstract:
- Iridium nickel (Ir-Ni) thin films were prepared on copper foam substrates by electrodeposition technology. The electrocatalytic hydrogen evolution (HER) performance of the films was expected to be improved by depending on the three-dimensional porous structure of foam copper (CF) and the excellent catalytic and corrosion resistance of Ir-Ni thin films. The electrodeposition process was executed under galvanostatic method. The resulting Ir-Ni thin film was subsequently compared with pure Ir and Ni films, which were also electrodeposited on copper foam. The surface morphology and chemical composition of the films were analyzed employing scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS) and X-ray photoelectron spectroscopy (XPS), and the electrocatalytic performance of the films was evaluated via linear sweep voltammetry (LSV). The results showed that the Ir-Ni thin film was successfully adhered to the porous and hollow-structured copper foam, exhibiting a relatively rougher surface compared to the pure Ni film. The film was predominantly composed of metallic Ir, with an atomic content of 80.0±1.2, further demonstrating the success of the deposition process. Remarkably, the Ir-Ni/CF demonstrated superior HER performance, achieving a current density of 10 mA·cm–2 with an overpotential of merely 60 mV and a Tafel slope as low as 40 mV·dec –1. The exchange current density j0 of Ir-Ni/CF, calculated by the Tafel extrapolation method, was 0.657 mA·cm –2, approximately twice that of the Ni film and 87.6% of the commercially available Pt/C catalysts. Furthermore, it exhibited commendable electrocatalytic stability in an alkaline solution, as evidenced by prolonged hydrogen evolution experiments. The electrocatalytic activity of the Ir-Ni/CF was significantly higher than that of Ir/CF and Ni/CF. This improvement can be primarily attributed to two pivotal factors: the increase in active surface area due to the relative roughness of the film, and the cooperative effect of Ir and Ni in the HER process.
参考文献/References:
[1].Armaroli N, Balzani V. The hydrogen issue[J]. ChemSusChem, 2011, 4(1): 21-36.
[2].常进法, 肖瑶, 罗兆艳, 等. 水电解制氢非贵金属催化剂的研究进展[J]. 物理化学学报, 2016, 32(7): 1556-1592.
[3].Wu W P, Chen Z F. Iridium coating: Processes, properties and application. Part I[J]. Johnson Matthey Technology Review, 2017, 61(1): 16-28.
[4].Wu W P, Chen Z F, Wang L. Oxidation behavior of multilayer iridium coating on niobium substrate[J]. Protection of Metals and Physical Chemistry of Surfaces, 2015, 51: 607-612.
[5].?zer E, Sinev I, Mingers A M, et al. Ir-Ni bimetallic OER catalysts prepared by controlled Ni electrodeposition on Irpoly and Ir (111)[J]. Surfaces, 2018, 1(1): 165-186.
[6].Ju L, Wu W P, Zhou Y C, et al. Electrodeposition in one step: Synthesizing Ir-Co tetradecahedral nanoparticles with high-index (311) crystal planes for enhanced catalytic activity in alkaline hydrogen evolution reaction[J]. Journal of Power Sources, 2024, 614: 235003.
[7].Yang Y, Lun Z, Xia G, et al. Non-precious alloy encapsulated in nitrogen-doped graphene layers derived from MOFs as an active and durable hydrogen evolution reaction catalyst[J]. Energy & Environmental Science, 2015, 8(12): 3563-3571.
[8].Safizadeh F, Ghali E, Houlachi G. Electrocatalysis developments for hydrogen evolution reaction in alkaline solutions-a review[J]. International Journal of Hydrogen Energy, 2015, 40(1): 256-274.
[9].Eftekhari A. Electrocatalysts for hydrogen evolution reaction[J]. International Journal of Hydrogen Energy, 2017, 42(16): 11053-11077.
[10].Wu W P. Effect of gelatin additive on microstructure and composition of electrodeposited rhenium-nickel alloys in aqueous solutions[J]. Applied Physics A, 2016, 122(12): 1028.
[11].El Sawy E N, Birss V I. Nano-porous iridium and iridium oxide thin films formed by high efficiency electrodeposition[J]. Journal of Materials Chemistry, 2009, 19(43): 8244-8252.
[12].Ahn S H, Tan H Y, Haensch M, et al. Self-terminated electrodeposition of iridium electrocatalysts[J]. Energy & Environmental Science, 2015, 8(12): 3557-3562.
[13].El Sawy E N, Birss V I. Nano-porous iridium and iridium oxide thin films formed by high efficiency electrodeposition[J]. Journal of Materials Chemistry, 2009, 19(43): 8244-8252.
[14].Wessling B, Mokwa W, Schnakenberg U. Sputtered Ir films evaluated for electrochemical performance I. Experimental results[J]. Journal of the Electrochemical Society, 2008, 155(5): F61.
[15].Papaderakis A, Pliatsikas N, Patsalas P, et al. Hydrogen evolution at Ir-Ni bimetallic deposits prepared by galvanic replacement[J]. Journal of Electroanalytical Chemistry, 2018, 808: 21-27.
[16].Xu S A, Chen S L, Tian L H, et al. Selective-leaching method to fabricate an Ir surface-enriched Ir-Ni oxide electrocatalyst for water oxidation[J]. Journal of Solid State Electrochemistry, 2016, 20: 1961-1970.
[17].Sasaki K, Kuttiyiel K A, Barrio L, et al. Carbon-supported IrNi core-shell nanoparticles: Synthesis, characterization, and catalytic activity[J]. The Journal of Physical Chemistry C, 2011, 115(20): 9894-9902.
[18].Wu W P, Jiang J J, Jiang P et al. Electrodeposition of nickel-iridium alloy films from aqueous solutions[J]. Applied Surface Science, 2018, 434: 307-317.
[19].Wu W P, Wang Z Z, Jiang P, et al. Effect of electroplating variables on electrodeposition of Ni rich Ni-Ir alloys from citrate aqueous solutions[J]. Journal of the Electrochemical Society, 2017, 164(14): D985.
[20].Wu W P. Effect of gelatin additive on microstructure and composition of electrodeposited rhenium-nickel alloys in aqueous solutions[J]. Applied Physics A, 2016, 122(12): 1028.
[21].Wu W P, Eliaz N, Gileadi E. Electrodeposition of Re-Ni alloys from aqueous solutions with organic additives[J]. Thin Solid Films, 2016, 616: 828-837.
[22].Wu W P. Electrodeposition and thermal stability of Re60Ni40 amorphous alloy[J]. Electrochemistry, 2016, 84(9): 699-704.
[23].Wu W P, Eliaz N, Gileadi E. The effects of pH and temperature on electrodeposition of Re-Ir-Ni coatings from aqueous solutions[J]. Journal of Materials Science, 2014, 162(1): D20.
[24].Wu W P, Liu J W, Miao N M, et al. Influence of thiourea on electroless Ni-P films deposited on silicon substrates[J]. Journal of Materials Science, 2019, 30: 7717-7724.
[25].Eliaz N, Gileadi E. Physical electrochemistry: Fundamentals, techniques, and applications[M]. John Wiley & Sons, 2019: 321-322.
[26].Jin G P, Peng X, Ding Y F, et al. Electrodeposition of platinum-nickel alloy nanocomposites on polyaniline-multiwalled carbon nanotubes for carbon monoxide redox[J]. Journal of Solid State Electrochemistry, 2009, 13: 967-973.
[27].Wu W P, Liu J W, Johannes N, et al. Galvanostatic electrodeposition of thin-film Ir-Ni electrocatalyst on copper foam for HER performance in alkaline electrolyte[J]. Catalysis Letters, 2020, 150: 1325-1336.
[28].Pfeifer V, Jones T E, Velasco Vélez J J, et al. The electronic structure of iridium and its oxides[J]. Surface and Interface Analysis, 2016, 48(5): 261-273.
[29].Zhao G Q, Li P, Cheng N Y, et al. An Ir/Ni(OH)2 heterostructured electrocatalyst for the oxygen evolution reaction: Breaking the scaling relation, stabilizing iridium (V), and beyond[J]. Advanced Materials, 2020, 32(24): 2000872.
[30].Shervedani R K, Torabi M, Yaghoobi F. Binder-free prickly nickel nanostructured/reduced graphene oxide composite: A highly efficient electrocatalyst for hydrogen evolution reaction in alkaline solutions[J]. Electrochimica Acta, 2017, 244: 230-238.
[31].Bockris J O, Potter E C. The mechanism of the cathodic hydrogen evolution reaction[J]. Journal of the Electrochemical Society, 1952, 99(4): 169.
[32].Chen W F, Wang C H, Sasaki K, et al. Highly active and durable nanostructured molybdenum carbide electrocatalysts for hydrogen production[J]. Energy & Environmental Science, 2013, 6(3): 943-951.
[33].Deng J, Ren P J, Deng D H, et al. Enhanced electron penetration through an ultrathin graphene layer for highly efficient catalysis of the hydrogen evolution reaction[J]. Angewandte Chemie International Edition, 2015, 54(7): 2100-2104.
[34].Li D J, Maiti U N, Lim J, et al. Molybdenum sulfide/N-doped CNT forest hybrid catalysts for high-performance hydrogen evolution reaction[J]. Nano letters, 2014, 14(3): 1228-1233.
[35].Gao M Y, Yang C, Zhang Q B, et al. Electrochemical fabrication of porous Ni-Cu alloy nanosheets with high catalytic activity for hydrogen evolution[J]. Electrochimica Acta, 2016, 215: 609-616.
[36].Fang M, Gao W, Dong G F, et al. Hierarchical NiMo-based 3D electrocatalysts for highly-efficient hydrogen evolution in alkaline conditions[J]. Nano Energy, 2016, 27: 247-254.
[37].Navarro-Flores E, Chong Z W, Omanovic S. Characterization of Ni, NiMo, NiW and NiFe electroactive coatings as electrocatalysts for hydrogen evolution in an acidic medium[J]. Journal of Molecular Catalysis A: Chemical, 2005, 226(2): 179-197.
[38].Ezaki H, Morinaga M, Watanabe S. Hydrogen overpotential for transition metals and alloys, and its interpretation using an electronic model[J]. Electrochimica Acta, 1993, 38(4): 557-564.
[39].Fan C L, Piron D L, Sleb A, et al. Study of electrodeposited nickel‐molybdenum, nickel‐tungsten, cobalt‐molybdenum, and cobalt‐tungsten as hydrogen electrodes in alkaline water electrolysis[J]. Journal of the Electrochemical Society, 1994, 141(2): 382.
[40].Highfield J G, Claude E, Oguro K. Electrocatalytic synergism in Ni/Mo cathodes for hydrogen evolution in acid medium: A new model[J]. Electrochimica Acta, 1999, 44(16): 2805-2814.
相似文献/References:
[1]张冰怡,张莎莎*,姚正军,等.电沉积Ni-W纳米晶镀层制备与显微硬度研究[J].电镀与精饰,2019,(8):20.[doi:10.3969/j.issn.1001-3849.2019.08.005]
ZHANG Bingyi,ZHANG Shasha*,YAO Zhengjun,et al.Preparation and Microhardness of Electrodeposited Ni-W Nanocrystalline Coatings[J].Plating & Finishing,2019,(12):20.[doi:10.3969/j.issn.1001-3849.2019.08.005]
[2]雷同鑫,鞠 辉,张长科,等.电镀Ni-W-P合金在钻杆接头上的应用[J].电镀与精饰,2019,(10):38.[doi:10.3969/j.issn.1001-3849.2019.10.009]
LEI Tongxin,JU Hui,ZHANG Changke,et al.Application of Ni-W-P Alloy Prepared by Electroplating to Tool Joints[J].Plating & Finishing,2019,(12):38.[doi:10.3969/j.issn.1001-3849.2019.10.009]
[3]李晓峰*,孟 芳,董会超,等.电沉积法制备掺铋金属锌及其性能表征[J].电镀与精饰,2020,(1):12.[doi:10.3969/j.issn.1001-3849.2020.01.003]
LI Xiaofeng*,MENG Fang,DONG Huichao,et al.Electrodeposited Preparation of Bi-Doped Metal Zinc and Its Performance Characterization[J].Plating & Finishing,2020,(12):12.[doi:10.3969/j.issn.1001-3849.2020.01.003]
[4]张永霞,王 玫,方 华*,等.Co3O4/碳纳米管复合膜的超级电容器性能[J].电镀与精饰,2020,(2):1.[doi:10.3969/j.issn.1001-3849.2020.02.001]
ZHANG Yongxia,WANG Mei,FANG Hua*,et al.Co3O4/Carbon Nanotube Composite Film for Supercapacitor and Its Performances[J].Plating & Finishing,2020,(12):1.[doi:10.3969/j.issn.1001-3849.2020.02.001]
[5]侯珂珂,陈新华,张万强,等.电沉积法制备仿生超疏水滤网及其油水分离性能[J].电镀与精饰,2020,(4):1.[doi:10.3969/j.issn.1001-3849.2020.04.0010]
HOU Keke,CHEN Xinhua,ZHANG Wanqiang,et al.Preparation of Biomimetic Superhydrophobic Filter Screen by Electrodeposition and the Oil-Water Separation Performance[J].Plating & Finishing,2020,(12):1.[doi:10.3969/j.issn.1001-3849.2020.04.0010]
[6]肖成龙,梁世雍,于兆勤*.可控阵列微柱超疏水表面实验研究[J].电镀与精饰,2020,(7):27.[doi:10.3969/j.issn.1001-3849.2020.07.0060]
XIAO Chenglong,LIANG Shiyong,YU Zhaoqin*.Experimental Study on Superhydrophobic Surface of Controllable Array Microcolumns[J].Plating & Finishing,2020,(12):27.[doi:10.3969/j.issn.1001-3849.2020.07.0060]
[7]徐 超,王淼宇,周建波,等.电沉积Ni-Mo-Fe-La合金析氢电极的工艺研究[J].电镀与精饰,2020,(8):7.[doi:10.3969/j.issn.1001-3849.2020.08.0020]
XU Chao,WANG Miaoyu,ZHOU Jianbo,et al.Study on Electrodeposition Process of Ni-Mo-Fe-La Alloy Hydrogen Evolution Electrode[J].Plating & Finishing,2020,(12):7.[doi:10.3969/j.issn.1001-3849.2020.08.0020]
[8]高 辉,刘伟杰*.2A12铝合金电沉积Ni-Co-MoS2复合镀层的耐磨性能研究[J].电镀与精饰,2020,(10):1.[doi:10.3969/j.issn.1001-3849.2020.10.0010]
GAO Hui,LIU Weijie*.Research on Wear Resistance of Ni-Co-MoS2 Composite Coating Electrodeposited on 2A12 Aluminium Alloy[J].Plating & Finishing,2020,(12):1.[doi:10.3969/j.issn.1001-3849.2020.10.0010]
[9]王 羽,刘励昀,杜荣斌*,等.添加剂MPS、DDAC、Cl-对铜箔电沉积的影响[J].电镀与精饰,2021,(5):1.[doi:10.3969/j.issn.1001-3849.2021.05.001]
WANG Yu,LIU Liyun,DU Rongbin*,et al.Effects of Additives MPS, DDAC and Cl- on the Copper Foil[J].Plating & Finishing,2021,(12):1.[doi:10.3969/j.issn.1001-3849.2021.05.001]
[10]杨惠良*.硫酸盐镀液中紫铜电沉积Ni-Co/WC复合镀层的工艺条件优化[J].电镀与精饰,2021,(6):30.[doi:10.3969/j.issn.1001-3849.2021.06.007]
YANG Huiliang*.Optimization of Process Conditions for Electrodeposition of Ni-Co/WC Composite Coatings on Red Copper from Sulfate Bath[J].Plating & Finishing,2021,(12):30.[doi:10.3969/j.issn.1001-3849.2021.06.007]