PDF下载 分享
[1]邹庆田.乙二醇在电沉积中的应用[J].电镀与精饰,2024,(4):74-80.[doi:10.3969/j.issn.1001-3849.2024.04.011]
 Zou Qingtian.The application of ethylene glycol in electrodeposition[J].Plating & Finishing,2024,(4):74-80.[doi:10.3969/j.issn.1001-3849.2024.04.011]
点击复制

乙二醇在电沉积中的应用

参考文献/References:



[1] Zarebska K, Skompska M. Electrodeposition of CdS from acidic aqueous thiosulfate solution-Invesitigation of the mechanism by electrochemical quartz microbalance technique[J]. Electrochimica Acta, 2011, 56(16): 5731-5739.

[2] Esfahani M, Zhang J, Wong Y C, et al. Electrodeposition of nanocrystalline zinc-tin alloy from aqueous electrolyte containing gluconate in the presence of polyethylene glycol and hexadecyltrimethylammonium bromide[J]. Journal of Electroanalytical Chemistry, 2018, 813: 143-151.

[3] Haftbaradaran A, Parvini-Ahmadi N, Yazdani S. Electrodeposition and characterization of metallic molybdenum from aqueous electrolytes containing high acetate concentrations[J]. Surface and Coatings Technology, 2017, 324: 1-6.

[4] Li M, Xi X L, Nie Z R, et al. Electrochemical studies on the reduction behavior of Co 2+ in eutectic NaF-KF melt[J]. International Journal of Electrochemical Science, 2018, 13(5): 4208-4222.

[5] Ueda M, Hayashi H, Ohtsuka T. Electrodeposition of Al-Pt alloys using constant potential electrolysis in AlCl 3 -NaCl-KCl molten salt containing PtCl 2 [J]. Surface and Coatings Technology, 2011, 205(19): 4401-4403.

[6] Cojocaru A, Mares M L, Prioteasa P, et al. Study of electrode processes and deposition of cobalt thin films from ionic liquid analogues based on choline chloride[J]. Journal of Solid State Electrochemistry, 2015, 19(4): 1001-1014.

[7] Su C N, An M Z, Yang P X, et al. Electrochemical behavior of cobalt from 1-butyl-3-methylimidazolium tetrafluoroborate ionic liquid[J]. Applied Surface Science, 2010, 256(16): 4888-4893.

[8] He X K, Yang J J, Zou Q T, et al. Effects of deposition potential and temperature on Co(II) reduction and electrocrystallization for preparing nanocrystalline Co coatings in ethylene glycol solution[J]. Journal of The Electrochemical Society, 2022, 169: 022502.

[9] Abbott A P, McKenzie K J. Application of ionic liquids to the electrodeposition of metals[J]. Physical Chemistry Chemical Physics, 2006, 8(37): 4265-4279.

[10] Gore R B, Pandey R K. A novel electroplating technique for cadmium telluride films in non-aqueous medium[J]. Thin Solid Films, 1988, 164: 255-259.

[11] Gore R B, Pandey R K, Kulkarni S K. Structure, composition, and surface topography of cadmium telluride films fabricated by a new nonaqueous electroplating technique[J]. Journal of Applied Physics, 1989, 65: 2693-2698.

[12] Pandey R K, Razzini G, Bicelli L P. A comparative study of the morphological and compositional trends in CdTe films galvanostatically deposited from an ethylene glycol based bath[J]. Solar Energy Materials and Solar Cells, 1992, 26(4): 285-293.

[13] Pandey R K, Maffi S, Bicelli L P. Study of CdTe electrodeposition from a nonaqueous bath[J]. Materials Chemistry and Physics, 1993, 35(1): 15-20.

[14] Pandey R K, Maffi S, Bicelli L P. Evolution of the morphology, structure and composition of CdTe films potentiostatically electrodeposited from an ethylene glycol-based bath[J]. Materials Chemistry and Physics, 1994, 37(2): 141-148.

[15] Lade S J, Lokhande C D. Electrodeposition of CdS from non-aqueous bath[J]. Materials Chemistry and Physics, 1997, 49(2): 160-163.

[16] Lade S J, Uplane M D, Lokhande C D. Electrosynthesis of CdTe films from ethylene glycol bath[J]. Materials Chemistry and Physics, 2000, 63(2): 99-103.

[17] Pawar S M, Moholkar A V, Shinde P S, et al. Room temperature electrocrystallization of CdSe thin films from ethylene glycol bath[J]. Journal of Alloys and Compounds, 2008, 459(1-2): 515-520.

[18] Pawar S M, Moholkar A V, Rajpure K Y, et al. Electrosynthesis and characterization of Fe doped CdSe thin films from ethylene glycol bath[J]. Applied Surface Science, 2007, 253(17): 7313-7317.

[19] Nguyen H P, Wu M X, Su J L, et al. Electrodeposition of bismuth telluride thermoelectric films from a nonaqueous electrolyte using ethylene glycol[J]. Electrochimica Acta, 2012, 68: 9-17.

[20] Yamamoto H, Morishita M, Mizuta Y, et al. Electrodeposition of Co-Sb thermoelectric film from ethylene glycol-CoCl 2 -SbCl 3 solution[J]. Surface and Coatings Technology, 2012, 206(15): 3415-3420.

[21] Wu M, Binnemans K, Fransaer J. Electrodeposition of antimony from chloride-free ethylene glycol solutions and fabrication of thermoelectric Bi 2 Te 3 /(Bi 1 - x Sb x ) 2 Te 3 multilayers using pulsed potential electrodeposition[J]. Electrochimica Acta, 2014, 147: 451-459.

[22] Singh V B, Sadeghi Sarabi R. Investigation of plating, properties and structure of nickel deposits from sulphamate-ethylene glycol bath[J]. Materials Chemistry and Physics, 1993, 34(3-4): 238-243.

[23] Neuróhr K, Pogány L, Tóth B G, et al. Electrodeposition of Ni from various non-aqueous media: The case of alcoholic solutions[J]. Journal of the Electrochemical Society, 2015, 162(7): D256-D264.

[24] Maltanava H M, Vorobyova T N, Vrublevskaya O N. Electrodeposition of tin coatings from ethylene glycol and propylene glycol electrolytes[J]. Surface and Coatings Technology, 2014, 254(15): 388-397.

[25] Panzeri G, Accogli A, Gibertini E, et al. Electrodepositsion of high-purity nanostructured iron films from Fe(II) and Fe(III) non-aqueous solutions based on ethylene glycol[J]. Electrochimica Acta, 2018, 271: 576-581.

[26] Panzeri G, Muller D, Accogli A, et al. Zinc electrodepositsion from a chloride-free non-aqueous solution based on ethylene glycol and acetate salts[J]. Electrochimica Acta, 2019, 296: 465-472.

[27] Panzeri G, Accogli A, Gibertini E, et al. Electrodepositsion of cobalt thin films and nanowires from ethylene glycol-based solution[J]. Electrochemistry Communications, 2019, 103: 31-36.

[28] Yang P X, An M Z, Su C N, et al. Fabrication of cobalt nanowires from mixture of 1-ethyl-3-methylimidazolium chloride ionic liquid and ethylene glycol using porous anodic alumina template[J]. Electrochimica Acta, 2008, 54(2): 763-767.

[29] Zhao F, Franz S, Vicenzo A, et al. Electrodeposition of Fe-Ga thin films from eutectic-based ionic liquid[J]. Electrochimica Acta, 2013, 114: 878-888.

[30] Pereira N M, Sousa C T, Pereira C M, et al. Enhanced properties of Co-Sn coatings electrodeposited from choline chloride-based deep eutectic solvents[J]. Crystal Growth and Design, 2017, 17(10): 5208-5215.

[31] Gu C D, You Y H, Yu Y L, et al. Microstructure, nanoindentation, and electrochemical properties of the nanocrystalline nickel film electrodeposited from choline chloride-ethylene glycol[J]. Surface and Coatings Technology, 2011, 20(21-22): 4928-4933.

[32] Gu C D, Tu J P. One-step fabrication of nanostructured Ni film with lotus effect from deep eutectic solvent[J]. Langmuir, 2011, 27(16): 10132-10140.

[33] You Y H, Gu C D, Wang X L, et al. Electrodeposition of Ni-Co alloys from a deep eutectic solvent[J]. Surface and Coatings Technology, 2012, 206(21-22): 3632-3638.

[34] Saravanan G, Mohan S. Structure, composition and corrosion resistance studies of Co-Cr alloy electrodeposited from deep eutectic solvent (DES)[J]. Journal of Alloys and Compounds, 2012, 522: 162-166.

[35] Fashu S, Gu C D, Zhang J L, et al. Effect of EDTA and NH 4 Cl additives on electrodeposition of Zn-Ni films from choline chloride-based ionic liquid[J]. Transactions of Nonferrous Metals Society of China, 2015, 25(6): 2054-2064.

[36] Zhang J L, Gu C D, Tong Y Y, et al. Microstructure and corrosion behavior of Cr and Cr-P alloy coatings electrodeposited from a Cr(III) deep eutectic solvent[J]. RSC Advances, 2015, 5(87): 71268-71277.

[37] Li W R, Hao J J, Mu S H, et al. Electrochemical behavior and electrodeposition of Ni-Co alloy from choline chloride-ethylene glycol deep eutectic solvent[J]. Applied Surface Science, 2020, 507: 144889.

[38] Winiarski J, Cie?likowska B, Tylus W, et al. Corrosion of nanocrystalline nickel coatings electrodeposited from choline chloride:ethylene glycol deep eutectic solvent exposed in 0.05 M NaCl solution[J]. Applied Surface Science, 2019, 470: 331-339.

[39] Vijayakumar J, Mohan S, Anand Kumar S, et al. Electrodeposition of Ni-Co-Sn alloy from choline chloride-based deep eutectic solvent and characterization as cathode for hydrogen evolution in alkaline solution[J]. International Journal of Hydrogen Energy, 2013, 38(25): 10208-10214.

[40] Gao M Y, Yang C, Zhang Q B, et al. Electrochemical fabrication of porous Ni-Cu alloy nanosheets with high catalytic activity for hydrogen evolution[J]. Electrochimica Acta, 2016, 215: 609-616.

[41] Gao M Y, Yang C, Zhang Q B, et al. Facile electrochemical preparation of self-supported porous Ni-Mo alloy microsphere films as efficient bifunctional electrocatalysts for water splitting[J]. Journal of Materials Chemistry A, 2017, 5(12): 5797-5805.

[42] Zeng J R, Gao M Y, Zhang Q B, et al. Facile electrodeposition of cauliflower-like S-doped nickel microsphere films as highly active catalysts for electrochemical hydrogen evolution[J]. Journal of Materials Chemistry A, 2017, 5(29): 15056-15064.

[43] Sun C B, Zeng J R, Lei H, et al. Direct electrodeposition of phosphorus-doped nickel superstructures from choline chloride-ethylene glycol deep eutectic solvent for enhanced hydrogen evolution catalysis[J]. ACS Sustainable Chemistry & Engineering, 2019, 7(1): 1529-1537.

[44] Kopczyński K, Lota G. Electrocatalytic properties of a cerium/nickel coating deposited using a deep eutectic solvent[J]. Electrochemistry Communications, 2019, 107: 106538.

[45] He X K, Sun Z Y, Zou Q T, et al. Electrochemical behavior of Co(II) reduction for preparing nanocrystalline Co catalyst for hydrogen evolution reaction from 1-ethyl-3-methylimidazolium bisulfate and ethylene glycol system[J]. Journal of The Electrochemical Society, 2019, 166(2): D57-D64.

[46] He X K, Sun Z Y, Zou Q T, et al. Codeposition of nanocrystalline Co-Ni catalyst based on 1-ethyl-3-methylimidazolium bisulfate and ethylene glycol system for hydrogen evolution reaction[J]. Journal of The Electrochemical Society, 2019, 166(16): D908-D915.

[47] Protsenko V S, Bogdanov D A, Korniy S A, et al. Application of a deep eutectic solvent to prepare nanocrystalline Ni and Ni/TiO 2 coatings as electrocatalysts for the hydrogen evolution reaction[J]. International Journal of Hydrogen Energy, 2019, 44(45): 24604-24616.

[48] Shaban M, Kholidy I, Ahmed G M, et al. Cyclic voltammetry growth and characterization of Sn-Ag alloys of different nanomorphologies and compositions for efficient hydrogen evolution in alkaline solutions[J]. RSC Advances, 2019, 9: 22389-22400.

[49] Vo T -G, Hidalgo S D S, Chiang C -Y. Controllable electrodeposition of binary metal films from deep eutectic solvent as efficient and durable catalyst for oxygen evolution reaction[J]. Dalton Transactions, 2019, 48(39): 14748-14757.

[50] Wang S J, Xiong X L, Zou X L, et al. Unraveling the dissolution mechanism of platinum and silver electrodes during compos ite electrodeposition in a deep eutectic solvent[J]. Journal of Materials Chemistry A, 2020, 8: 4354-4361.

[51] Sun Y, Cheng S A, Mao Z Z, et al. High electrochemical activity of a Ti/SnO 2 -Sb electrode electrodeposited using deep eutectic solvent[J]. Chemosphere, 2020, 239: 124715.

[52] Gong K, Hua Y X, Xu C Y, et al. Electrodeposition behavior of bright nickel in air and water-stable betaine·HCl - ethylene glycol ionic liquid[J]. Transactions of Nonferrous Metals Society of China, 2015, 25(7): 2458-2465.

[53] 马军德 , 李冰 , 颜灵光 , 等 . 乙二醇对 ZnCl 2 -EMIC 离子液体电沉积锌的影响 [J]. 有色金属 , 2010, 62(2): 62-66.

相似文献/References:

[1]张冰怡,张莎莎*,姚正军,等.电沉积Ni-W纳米晶镀层制备与显微硬度研究[J].电镀与精饰,2019,(8):20.[doi:10.3969/j.issn.1001-3849.2019.08.005]
 ZHANG Bingyi,ZHANG Shasha*,YAO Zhengjun,et al.Preparation and Microhardness of Electrodeposited Ni-W Nanocrystalline Coatings[J].Plating & Finishing,2019,(4):20.[doi:10.3969/j.issn.1001-3849.2019.08.005]
[2]雷同鑫,鞠 辉,张长科,等.电镀Ni-W-P合金在钻杆接头上的应用[J].电镀与精饰,2019,(10):38.[doi:10.3969/j.issn.1001-3849.2019.10.009]
 LEI Tongxin,JU Hui,ZHANG Changke,et al.Application of Ni-W-P Alloy Prepared by Electroplating to Tool Joints[J].Plating & Finishing,2019,(4):38.[doi:10.3969/j.issn.1001-3849.2019.10.009]
[3]李晓峰*,孟 芳,董会超,等.电沉积法制备掺铋金属锌及其性能表征[J].电镀与精饰,2020,(1):12.[doi:10.3969/j.issn.1001-3849.2020.01.003]
 LI Xiaofeng*,MENG Fang,DONG Huichao,et al.Electrodeposited Preparation of Bi-Doped Metal Zinc and Its Performance Characterization[J].Plating & Finishing,2020,(4):12.[doi:10.3969/j.issn.1001-3849.2020.01.003]
[4]张永霞,王 玫,方 华*,等.Co3O4/碳纳米管复合膜的超级电容器性能[J].电镀与精饰,2020,(2):1.[doi:10.3969/j.issn.1001-3849.2020.02.001]
 ZHANG Yongxia,WANG Mei,FANG Hua*,et al.Co3O4/Carbon Nanotube Composite Film for Supercapacitor and Its Performances[J].Plating & Finishing,2020,(4):1.[doi:10.3969/j.issn.1001-3849.2020.02.001]
[5]侯珂珂,陈新华,张万强,等.电沉积法制备仿生超疏水滤网及其油水分离性能[J].电镀与精饰,2020,(4):1.[doi:10.3969/j.issn.1001-3849.2020.04.0010]
 HOU Keke,CHEN Xinhua,ZHANG Wanqiang,et al.Preparation of Biomimetic Superhydrophobic Filter Screen by Electrodeposition and the Oil-Water Separation Performance[J].Plating & Finishing,2020,(4):1.[doi:10.3969/j.issn.1001-3849.2020.04.0010]
[6]肖成龙,梁世雍,于兆勤*.可控阵列微柱超疏水表面实验研究[J].电镀与精饰,2020,(7):27.[doi:10.3969/j.issn.1001-3849.2020.07.0060]
 XIAO Chenglong,LIANG Shiyong,YU Zhaoqin*.Experimental Study on Superhydrophobic Surface of Controllable Array Microcolumns[J].Plating & Finishing,2020,(4):27.[doi:10.3969/j.issn.1001-3849.2020.07.0060]
[7]徐 超,王淼宇,周建波,等.电沉积Ni-Mo-Fe-La合金析氢电极的工艺研究[J].电镀与精饰,2020,(8):7.[doi:10.3969/j.issn.1001-3849.2020.08.0020]
 XU Chao,WANG Miaoyu,ZHOU Jianbo,et al.Study on Electrodeposition Process of Ni-Mo-Fe-La Alloy Hydrogen Evolution Electrode[J].Plating & Finishing,2020,(4):7.[doi:10.3969/j.issn.1001-3849.2020.08.0020]
[8]高 辉,刘伟杰*.2A12铝合金电沉积Ni-Co-MoS2复合镀层的耐磨性能研究[J].电镀与精饰,2020,(10):1.[doi:10.3969/j.issn.1001-3849.2020.10.0010]
 GAO Hui,LIU Weijie*.Research on Wear Resistance of Ni-Co-MoS2 Composite Coating Electrodeposited on 2A12 Aluminium Alloy[J].Plating & Finishing,2020,(4):1.[doi:10.3969/j.issn.1001-3849.2020.10.0010]
[9]王 羽,刘励昀,杜荣斌*,等.添加剂MPS、DDAC、Cl-对铜箔电沉积的影响[J].电镀与精饰,2021,(5):1.[doi:10.3969/j.issn.1001-3849.2021.05.001]
 WANG Yu,LIU Liyun,DU Rongbin*,et al.Effects of Additives MPS, DDAC and Cl- on the Copper Foil[J].Plating & Finishing,2021,(4):1.[doi:10.3969/j.issn.1001-3849.2021.05.001]
[10]杨惠良*.硫酸盐镀液中紫铜电沉积Ni-Co/WC复合镀层的工艺条件优化[J].电镀与精饰,2021,(6):30.[doi:10.3969/j.issn.1001-3849.2021.06.007]
 YANG Huiliang*.Optimization of Process Conditions for Electrodeposition of Ni-Co/WC Composite Coatings on Red Copper from Sulfate Bath[J].Plating & Finishing,2021,(4):30.[doi:10.3969/j.issn.1001-3849.2021.06.007]

备注/Memo

收稿日期: 2023-06-14 修回日期: 2023-11-02 * 通信作者: 邹庆田( 1994 —),男,硕士研究生,主要研究金属材料表面科学与工程,析氢催化电极材料, email : 1048968241@qq.com?/html>

更新日期/Last Update: 2024-04-09