JIA Yuteng,HU Guangyu,ZHAO Ming?,et al.Research Progress of TiO2 Photocatalytic Composites Based on Electrodeposition Technology in the Field of Water Treatment[J].Plating & Finishing,2021,(8):54-58.[doi:10.3969/j.issn.1001-3849.2021.08.012]
水处理领域基于电沉积的TiO2光催化材料进展
- Title:
- Research Progress of TiO2 Photocatalytic Composites Based on Electrodeposition Technology in the Field of Water Treatment
- 文献标志码:
- A
- 摘要:
- 通过电沉积技术在金属基体上制备金属/TiO2纳米颗粒复合膜或在TiO2纳米管电沉积负载金属纳米颗粒和纳米半导体复合材料是制备应用于水处理领域优良光催化性能和宽光谱吸收响应的TiO2光催化复合材料的有效途径。近年来,TiO2光催化复合材料电沉积制备取得较大进展。本文综述了水处理领域基于电沉积技术TiO2光催化复合材料的研究进展,包括光催化机理、电沉积制备过程、结构特征和光催化性能,最后阐述了该类材料面临的挑战以及未来的发展方向。
- Abstract:
- The preparation of metal/TiO2 nanoparticle composite films on metal substrates by electrodeposition technology or the electrodeposition of metal nanoparticles and nano-semiconductor composite materials on TiO2 nanotubes was the preparation of TiO2 with excellent photocatalytic performance and broad-spectrum absorption response in the field of water treatment. In recent years, the preparation of TiO2 photocatalytic composites by electrodeposition had made great progress. This article reviews the research progress of TiO2 photocatalytic composite materials based on electrodeposition technology in the field of water treatment, including photocatalytic mechanism, electrodeposition preparation process, structural characteristics and photocatalytic performance. Finally, the challenges and future development directions of this type of materials were described.
参考文献/References:
[1] Han F, Kambala V S R, Srinivasan M, et at. Tailored titanium dioxide photocatalysts for the degradation of organic dyes in wastewater treatment: A review[J]. Applied Catalysis A: General, 2009, 359(1-2): 25-40.
[2] 王有群,郑智阳,张志宾,等.改性TiO2光催化剂去除废水中重金属离子研究进展[J],湿法冶金,2018, 37(4): 260-266.
Wang Y Q, Zheng Z Y, Zhang Z B, et at. Research progress of research on removal of heavy metal ions in waste water with photocatalytic TiO2-modified [J]. Hydrometallurgy of China, 2018, 37(4): 260-266 (in Chinese).
[3] Sung-Suh H M, Choi J R, Hah H J, et al. Comparison of Ag deposition effects on the photocatalytic activity of nanoparticulate TiO2 under visible and UV light irradiation [J]. Journal of Photochemistry and Photobiology A: Chemistry, 2004, 163 (1-2): 37-44.
[4] Subramanian V, Wolf E, Kamat P V. Semiconductor-metal composite nanostructures. to what extent do metal nanoparticles improve the photocatalytic activity of TiO2 Films? [J]. Journal of physical chemistry B, 2001, 105(46): 11439-11446.
[5] Bessekhouad Y, Robert D, Weber J. V. Bi2S3/TiO2 and CdS/TiO2 heterojunctions as an available configuration for photocatalytic degradation of organic pollutant [J]. Journal of Photochemistry and Photobiology A: Chemistry, 2004, 163(3): 569-580.
[6] Bessekhouad Y, Chaoui N, Trzpit M, et al. UV-vis versus visible degradation of Acid Orange II in a coupled CdS/TiO2 semiconductors suspension[J]. Journal of Photochemistry and Photobiology A: Chemistry, 2006, 183(1-2): 218-224.
[7] Wen J Q, Li X, Liu W, et al. Photocatalysis fundamentals and surface modification of TiO2 nanomaterials[J]. Chinese Journal of Catalysis, 2015, 36(12): 2049-2070.
[8] Chen C, Ma W, Zhao J. Semiconductor-mediated photo-degradation of pollutants under visible-light irradiation[J]. Chemical Society Reviews, 2010, 39(11): 4206-4219.
[9] Deguchi T, Imai K, Matsui H, et al. Rapid electroplating of photocatalytically highly active TiO2-Zn nanocomposite films on steel [J]. Journal of Materials Science. 2001, 36(19): 4723-4729.
[10] 李爱昌,李桂花,郑琰,等.(Ni-Mo)/TiO2纳米薄膜光催化降解刚果红的性能与机理[J]. 物理化学学报, 2012, 28(2): 457-464.
Li A C, Li G H, Zheng Y, et al. Photocatalytic property and reaction mechanism of (Ni-Mo)/TiO2 nano thin film evaluated with congo red [J]. Acta Physico-Chimica Sinica, 2012, 28(2): 457-464 (in Chinese).
[11] 李爱昌,李健飞,刘亚录,等.负偏压下(Ni-Mo)/TiO2膜电极光电催化降解罗丹明B的性能和机理[J]. 化学学报, 2013, 71(5): 815-821.
Li A C, Li J F, Liu Y L, et al. Photoelectrocatalytic properties and reaction mechanism of (Ni-Mo)/TiO2 film electrode for degradation of Rhodamine B at negative bias [J]. Acta Chimica Sinica, 2013, 71(5): 815-821 (in Chinese).
[12] 于化江,熊亮,熊中琼,等.复合电沉积制备TiO2/泡沫镍光催化材料及其催化活性[J]. 化工进展, 2011, 30(9):1972-1976.
Yu H J, Xiong L, Xiong Z Q, et al. Preparation of foam nickel-supported nanosized TiO2 by composite electrodeposition and its photocatalytic performance[J]. Chemical Industry and Engineering Progress, 2011, 30(9):1972-1976 (in Chinese).
[13] Zhang J, Xiao G, Xiao F, et al. Revisiting one-dimensional TiO2 based hybrid heterostructures for heterogeneous photocatalysis: a critical review[J]. Materials Chemistry Frontiers, 2017, 1(2): 231-250.
[14] Zhang S, Peng B, Yang S, et al. Non-noble metal copper nanoparticles-decorated TiO2 nanotube arrays with plasmon-enhanced photocatalytic hydrogen evolution under visible light[J]. International Journal of Hydrogen Energy, 2015, 40(1): 303-310.
[15] Liang F, Zhang J, Zheng L,et al. Selective electrodeposition of Ni into the intertubular voids of anodic TiO2 nanotubes for improved photocatalytic properties[J]. Journal of Materials Research. 2013, 28(3): 405-410.
[16] Ling, Wu, Fang, et al. Plasmon-induced photo-electrocatalytic activity of Au nanoparticles enhanced TiO2 nanotube arrays electrodes for environmental remediation[J]. Applied Catalysis B: Environmental, 2015, 164, 217-224.
[17] Liu X, Liu Z, Lu J, et al. Electrodeposition preparation of Ag nanoparticles loaded TiO2 nanotube arrays with enhanced photocatalytic performance[J]. Applied Surface Science, 2014, 288, 513-517.
[18] Low J, Yu J, Jaroniec M, et al. Heterojunction photocatalysts[J]. Advanced Materials, 2017, 29(20): 16016094.
[19] Lv J, Su L, Wang H, et al. Enhanced visible light photocatalytic activity of TiO2 nanotube arrays modified with CdSe nanoparticles by electrodeposition method[J]. Surface & Coatings Technology, 2014, 242: 20-28.
[20] Shao Z B, Zhu W, Li Z, et al. One-step fabrication of CdS nanoparticle-sensitized TiO2 nanotube arrays via electrodeposition[J]. The Journal of Physical Chemistry C, 2012, 116, 2438-2442.
[21] Cheng X, Pan G, Yu X. Visible light responsive photoassisted electrocatalytic system based on CdS NCs decorated TiO2 nano-tube photoanode and activated carbon containing cathode for wastewater treatment [J]. Electrochimica Acta, 2015, 156, 94-101.
[22] Zhang S, Zhang S, Peng F, et al. Electrodeposition of polyhedral Cu2O on TiO2 nanotube arrays for enhancing visible light photocatalytic performance[J]. Electrochemistry Communications. 2011, 13(8): 861-864.
[23] 张剑芳,王岩,沈天阔,等.脉冲沉积制备Cu2O/TiO2 纳米管异质结的可见光光催化性能[J]. 物理化学学报, 2014, 30(8): 1535-1542.
Zhang J F, Wang Y, Shen T K, et al. Visible light photocatalytic performance of Cu2O/TiO2 nanotube heterojunction composites prepared by pulse deposition[J]. Acta Physico-Chimica Sinica, 2014, 30(8): 1535-1542 (in Chinese).
[24] Tsuia L k, Wu L, Swami N, et al. Photoelectrochemical Performance of Electrodeposited Cu2O on TiO2 Nanotubes[J]. ECS Electrochemistry Letters, 2012, 1(2): D15-D19.
相似文献/References:
[1]张冰怡,张莎莎*,姚正军,等.电沉积Ni-W纳米晶镀层制备与显微硬度研究[J].电镀与精饰,2019,(8):20.[doi:10.3969/j.issn.1001-3849.2019.08.005]
ZHANG Bingyi,ZHANG Shasha*,YAO Zhengjun,et al.Preparation and Microhardness of Electrodeposited Ni-W Nanocrystalline Coatings[J].Plating & Finishing,2019,(8):20.[doi:10.3969/j.issn.1001-3849.2019.08.005]
[2]雷同鑫,鞠 辉,张长科,等.电镀Ni-W-P合金在钻杆接头上的应用[J].电镀与精饰,2019,(10):38.[doi:10.3969/j.issn.1001-3849.2019.10.009]
LEI Tongxin,JU Hui,ZHANG Changke,et al.Application of Ni-W-P Alloy Prepared by Electroplating to Tool Joints[J].Plating & Finishing,2019,(8):38.[doi:10.3969/j.issn.1001-3849.2019.10.009]
[3]李晓峰*,孟 芳,董会超,等.电沉积法制备掺铋金属锌及其性能表征[J].电镀与精饰,2020,(1):12.[doi:10.3969/j.issn.1001-3849.2020.01.003]
LI Xiaofeng*,MENG Fang,DONG Huichao,et al.Electrodeposited Preparation of Bi-Doped Metal Zinc and Its Performance Characterization[J].Plating & Finishing,2020,(8):12.[doi:10.3969/j.issn.1001-3849.2020.01.003]
[4]张永霞,王 玫,方 华*,等.Co3O4/碳纳米管复合膜的超级电容器性能[J].电镀与精饰,2020,(2):1.[doi:10.3969/j.issn.1001-3849.2020.02.001]
ZHANG Yongxia,WANG Mei,FANG Hua*,et al.Co3O4/Carbon Nanotube Composite Film for Supercapacitor and Its Performances[J].Plating & Finishing,2020,(8):1.[doi:10.3969/j.issn.1001-3849.2020.02.001]
[5]侯珂珂,陈新华,张万强,等.电沉积法制备仿生超疏水滤网及其油水分离性能[J].电镀与精饰,2020,(4):1.[doi:10.3969/j.issn.1001-3849.2020.04.0010]
HOU Keke,CHEN Xinhua,ZHANG Wanqiang,et al.Preparation of Biomimetic Superhydrophobic Filter Screen by Electrodeposition and the Oil-Water Separation Performance[J].Plating & Finishing,2020,(8):1.[doi:10.3969/j.issn.1001-3849.2020.04.0010]
[6]肖成龙,梁世雍,于兆勤*.可控阵列微柱超疏水表面实验研究[J].电镀与精饰,2020,(7):27.[doi:10.3969/j.issn.1001-3849.2020.07.0060]
XIAO Chenglong,LIANG Shiyong,YU Zhaoqin*.Experimental Study on Superhydrophobic Surface of Controllable Array Microcolumns[J].Plating & Finishing,2020,(8):27.[doi:10.3969/j.issn.1001-3849.2020.07.0060]
[7]徐 超,王淼宇,周建波,等.电沉积Ni-Mo-Fe-La合金析氢电极的工艺研究[J].电镀与精饰,2020,(8):7.[doi:10.3969/j.issn.1001-3849.2020.08.0020]
XU Chao,WANG Miaoyu,ZHOU Jianbo,et al.Study on Electrodeposition Process of Ni-Mo-Fe-La Alloy Hydrogen Evolution Electrode[J].Plating & Finishing,2020,(8):7.[doi:10.3969/j.issn.1001-3849.2020.08.0020]
[8]高 辉,刘伟杰*.2A12铝合金电沉积Ni-Co-MoS2复合镀层的耐磨性能研究[J].电镀与精饰,2020,(10):1.[doi:10.3969/j.issn.1001-3849.2020.10.0010]
GAO Hui,LIU Weijie*.Research on Wear Resistance of Ni-Co-MoS2 Composite Coating Electrodeposited on 2A12 Aluminium Alloy[J].Plating & Finishing,2020,(8):1.[doi:10.3969/j.issn.1001-3849.2020.10.0010]
[9]王 羽,刘励昀,杜荣斌*,等.添加剂MPS、DDAC、Cl-对铜箔电沉积的影响[J].电镀与精饰,2021,(5):1.[doi:10.3969/j.issn.1001-3849.2021.05.001]
WANG Yu,LIU Liyun,DU Rongbin*,et al.Effects of Additives MPS, DDAC and Cl- on the Copper Foil[J].Plating & Finishing,2021,(8):1.[doi:10.3969/j.issn.1001-3849.2021.05.001]
[10]杨惠良*.硫酸盐镀液中紫铜电沉积Ni-Co/WC复合镀层的工艺条件优化[J].电镀与精饰,2021,(6):30.[doi:10.3969/j.issn.1001-3849.2021.06.007]
YANG Huiliang*.Optimization of Process Conditions for Electrodeposition of Ni-Co/WC Composite Coatings on Red Copper from Sulfate Bath[J].Plating & Finishing,2021,(8):30.[doi:10.3969/j.issn.1001-3849.2021.06.007]
备注/Memo
收稿日期: 2020-01-14;修回日期: 2020-01-29
作者简介: 贾予腾(1994- ),男,硕士,email:851357448@qq.com
*通信作者: 赵明,email: zhaoming@ncut.edu.cn