PDF下载 分享
[1]程庆,李宁,潘钦敏*,等.电解铜箔添加剂的研究进展及应用现状[J].电镀与精饰,2022,(12):69-79.[doi:10.3969/j.issn.1001-3849.2022.12.010]
 CHENG Qing,LI Ning,PAN Qinmin*,et al.Research Progress and Application Status of Electrolytic Copper Foil Additives[J].Plating & Finishing,2022,(12):69-79.[doi:10.3969/j.issn.1001-3849.2022.12.010]
点击复制

电解铜箔添加剂的研究进展及应用现状

参考文献/References:



[1] Wang C, Yuan W, Chen Y, et al. Plowing-extrusion processes and performance of functional surface structures of copper current collectors for Li-ion batteries[J]. Nanomanufacturing and Metrology, 2022(2): 1-18.

[2] Shin D J, Kim Y K, Yoon J M, et al. Discoloration resistance of electrolytic copper foil following 1, 2, 3-benzotriazole surface treatment with sodium molybdate[J]. Coatings, 2018, 8(12): 427.

[3] Pavithra C L P, Sarada B V, Rajulapati K V, et al. Controllable crystallographic texture in copper foils exhibiting enhanced mechanical and electrical properties by pulse reverse electrodeposition[J]. Crystal Growth & Design, 2015, 15(9): 4448-4458.

[4] Chan P F, Ren R H, Wen S I, et al. Effects of additives and convection on Cu foil fabrication with a low surface roughness[J]. Journal of the Electrochemical Society, 2017, 164(9): D660.

[5] Wang X, Liu X, Shi L, et al. Characteristic and formation mechanism of matt surface of double-rolled copper foil[J]. Journal of Materials Processing Technology, 2015, 216: 463-471.

[6] Kurihara H, Kondo K, Okamoto Y. Effect of titanium cathode surface condition on initial copper deposition during electrolytic fabrication of copper foil[J]. Journal of Chemical Engineering of Japan, 2010, 43(7): 612-617.

[7] Li Y, Huang G, Yin X, et al. Effect of copper ion concentration on microstructure and mechanical properties of electrolytic copper foil[C]//IOP Conference Series: Materials Science and Engineering. London: IOP Publishing, 2018, 381(1): 012166.

[8] Zhang J, Chen H, Fan B, et al. Study on the relationship between crystal plane orientation and strength of electrolytic copper foil[J]. Journal of Alloys and Compounds, 2021, 884: 161044.

[9] Balasubramanian A, Srikumar D S, Raja G, et al. Effect of pulse parameter on pulsed electrodeposition of copper on stainless steel[J]. Surface Engineering, 2009, 25(5): 389-392.

[10] Shu J, Shui M, Huang F, et al. Comparative study on surface behaviors of copper current collector in electrolyte for Li-ion batteries[J]. Electrochimica Acta, 2011, 56(8): 3006-3014.

[11] Woo T G, Park J J, Park I S. Initial behavior of additives and mechanical properties of copper foils on high current density[J]. Korean Journal of Metals and Materials, 2021, 59(5): 304-313.

[12] Gu C, Xu H, Zhang T Y. Fabrication of high aspect ratio through-wafer copper interconnects by reverse pulse electroplating[J]. Journal of Micromechanics and Microengineering, 2009, 19(6): 065011.

[13] Li S, Zhu Q, Zheng B, et al. Nano-scale twinned Cu with ultrahigh strength prepared by direct current electrodeposition[J]. Materials Science and Engineering: A, 2019, 758: 1-6.

[14] Chan T C, Chueh Y L, Liao C N. Manipulating the crystallographic texture of nanotwinned Cu films by electrodeposition[J]. Crystal Growth & Design, 2011, 11(11): 4970-4974.

[15] Cui W. Effect and Interactions of Commercial Additives and Chloride Ion in Copper Electrowinning[M]. Rolla: Missouri University of Science and Technology, 2014.

[16] Song J M, Zou Y S, Kuo C C, et al. Orientation dependence of the electrochemical corrosion properties of electrodeposited Cu foils[J]. Corrosion Science, 2013, 74: 223-231.

[17] Vanfleteren J, Gonzalez M, Bossuyt F, et al. Printed circuit board technology inspired stretchable circuits[J]. MRS Bulletin, 2012, 37(3): 254-260.

[18] Wang Q, Peng Y, Mou Y, et al. Promotion of high-speed copper-filling performance for interconnections with increasing aspect-ratio using compound additives[J]. Micromachines, 2022, 13(9): 1539.

[19] Lai Z, Wang S, Wang C, et al. A comparison of typical additives for copper electroplating based on theoretical computation[J]. Computational Materials Science, 2018, 147: 95-102.

[20] Zhi C C. Effects of Thiols and Their Aging on Copper Electrodeposition for ULSI Interconnects[D]. Portland: Oregon Health & Science University, 2002.

[21] Wang W, Li Y B, Li Y L. Invalidating mechanism of bis-(3-sulfopropyl)-disulfide (SPS) during copper via-filling process[J]. Applied Surface Science, 2009, 255(8): 4389-4392.

[22] Lee C H, Lee S C, Kim J J. Bottom-up filling in Cu electroless deposition using bis-(3-sulfopropyl)-disulfide (SPS)[J]. Electrochimica Acta, 2005, 50(16-17): 3563-3568.

[23] Nagayama T, Yoshida H, Shohji I. Effect of additives in an electrolyte on mechanical properties of electrolytic copper foil[C]//International Electronic Packaging Technical Conference and Exhibition. New York: American Society of Mechanical Engineers, 2013, :73172.

[24] Zhang W, Lu X, Liu Y, et al. Synergistic effect of ethylene thiourea and bis-(3-sulfopropyl)-disulfide on acid Cu electrodeposition[J]. Journal of the Electrochemical Society, 2007, 154(10): D526.

[25] Yin L, Pan J, Leygraf C, et al. Experimental and simulation investigations of copper reduction mechanism with and without addition of SPS[J]. Journal of the Electrochemical Society, 2018, 165(13): D604.

[26] Vereecken P M, Binstead R A, Deligianni H, et al. The chemistry of additives in damascene copper plating[J]. IBM Journal of Research and Development, 2005, 49(1): 3-18.

[27] 樊小伟 . 超薄电解铜箔组织结构与力学性能调控及其表面处理技术研究 [D]. 赣州 : 江西理工大学 , 2021.

[28] Lai Z, Wang S, Wang C, et al. Computational analysis and experimental evidence of two typical levelers for acid copper electroplating[J]. Electrochimica Acta, 2018, 273: 318-326.

[29] Yu R, Liu Q, Qiu G, et al. Inhibition behavior of some new mixed additives upon copper electrowinning[J]. Transactions of Nonferrous Metals Society of China, 2008, 18(5): 1280-1284.

[30] Safizadeh F, Lafront A M, Ghali E, et al. Monitoring the quality of copper deposition by statistical and frequency analyses of electrochemical noise[J]. Hydrometallurgy, 2010, 100(3-4): 87-94.

[31] Wang C, Zhang J, Yang P, et al. Electrochemical behaviors of Janus green B in through-hole copper electroplating: An insight by experiment and density functional theory calculation using Safranine T as a comparison[J]. Electrochimica Acta, 2013, 92: 356-364.

[32] Pan Y, Liu Y, Lu X, et al. The role of hydroxyethyl cellulose (HEC) in the chemical mechanical planarization of copper[J]. Journal of the Electrochemical Society, 2012, 159(3): H329.

[33] Sun M, O’Keefe T J. The effect of additives on the nucleation and growth of copper onto stainless steel cathodes[J]. Metallurgical Transactions B, 1992, 23(5): 591-599.

[34] Turner D R, Johnson G R. The effect of some addition agents on the kinetics of copper electrodeposition from a sulfate solution: I. Cathode potential‐current density relation[J]. Journal of the Electrochemical Society, 1962, 109(9): 798.

[35] Meudre C, Ricq L, Hihn J Y, et al. Adsorption of gelatin during electrodeposition of copper and tin-copper alloys from acid sulfate electrolyte[J]. Surface and Coatings Technology, 2014, 252: 93-101.

[36] Chang T, Jin Y, Wen L, et al. Synergistic effects of gelatin and convection on copper foil electrodeposition[J]. Electrochimica Acta, 2016, 211: 245-254.

[37] 余威懿 . 锂离子电池用电解铜箔的制备工艺与性能研究 [D]. 哈尔滨 : 哈尔滨工业大学 , 2019.

[38] Gallaway J W, West A C. PEG, PPG, and their triblock copolymers as suppressors in copper electroplating[J]. Journal of the Electrochemical Society, 2008, 155(10): D632.

[39] Feng Z V, Li X, Gewirth A A. Inhibition due to the interaction of polyethylene glycol, chloride, and copper in plating baths: A surface-enhanced Raman study[J]. The Journal of Physical Chemistry B, 2003, 107(35): 9415-9423.

[40] Yokoi M, Konishi S, Hayashi T. Adsorption behavior of polyoxyethyleneglycole on the copper surface in an acid copper sulfate bath[J]. Denki Kagaku oyobi Kogyo Butsuri Kagaku, 1984, 52(4): 218-223.

[41] Schmidt R, Knaup J M, von Horsten H F. Computational investigation of the adsorption of polyalkylene glycols on copper surfaces for copper electrodeposition[J]. Advanced Theory and Simulations, 2020, 3(1): 1900160.

[42] Lin C C, Yen C H, Lin S C, et al. Interactive effects of additives and electrolyte flow rate on the microstructure of electrodeposited copper foils[J]. Journal of the Electrochemical Society, 2017, 164(13): D810.

[43] Zhang Y, An M, Yang P, et al. Recent advances in electroplating of through-hole copper interconnection[J]. Electrocatalysis, 2021, 12(6): 619-627.

[44] Song S J, Choi S R, Kim J G, et al. Effect of molecular weight of polyethylene glycol on copper electrodeposition in the presence of bis-3-sulfopropyl-disulfide[J]. International Journal of Electrochemical Science, 2016, 151: 10067-10079.

[45] Dow W P, Yen M Y, Lin W B, et al. Influence of molecular weight of polyethylene glycol on microvia filling by copper electroplating[J]. Journal of the Electrochemical Society, 2005, 152(11): C769.

[46] Pasquale M A, Gassa L M, Arvia A J. Copper electrodeposition from an acidic plating bath containing accelerating and inhibiting organic additives[J]. Electrochimica Acta, 2008, 53(20): 5891-5904.

[47] Woo T G, Park I S, Seol K W. Effect of additives on the elongation and surface properties of copper foils[J]. Electronic Materials Letters, 2013, 9(3): 341-345.

[48] Wang W, Li Y B. Effect of Cl - on the adsorption-desorption behavior of PEG[J]. Journal of the Electrochemical Society, 2008, 155(4): D263.

[49] Sun Y, Pan J, Liu L, et al. Improvement of performance stability of electrolytic copper foils by bi-component additives[J]. Journal of Applied Electrochemistry, 2022: 1-12.

[50] Lakshmanan V I, Mackinnon D J, Brannen J M. The effect of chloride ion in the electrowinning of copper[J]. Journal of Applied Electrochemistry, 1977, 7(1): 81-90.

[51] Ren P, An M, Yang P, et al. Revealing the acceleration effect of SPS and Cl - on copper surface: Instantaneous nucleation and multi-step energy change[J]. Applied Surface Science, 2022, 583: 152523.

[52] Wang S P, Wei K X, Wei W, et al. Enhancing surface roughness and tensile strength of electrodeposited copper foils by composite additives[J]. Physica Status Solidi (A), 2022, 219(5): 2100735.

[53] Veilleux B, Lafront A M, Ghali E. Influence of gelatin on deposit morphology during copper electrorefining using scaled industrial cells[J]. Canadian Metallurgical Quarterly, 2002, 41(1): 47-62.

[54] Feng Z V, Li X, Gewirth A A. Inhibition due to the interaction of polyethylene glycol, chloride, and copper in plating baths: A surface-enhanced Raman study[J]. The Journal of Physical Chemistry B, 2003, 107(35): 9415-9423.

[55] Lai Z, Wang C, Huang Y, et al. Temperature-dependent inhibition of PEG in acid copper plating: Theoretical analysis and experiment evidence[J]. Materials Today Communications, 2020, 24: 100973.

[56] 朱若林 , 宋言 , 代泽宇 , 等 . 骨胶和聚二硫二丙烷磺酸钠对厚电解铜箔性能的影响 [J]. 电镀与涂饰 , 2021, 40(13): 1027-1030.

[57] Kim M J, Seo Y, Kim H C, et al. Galvanostatic bottom-up filling of TSV-like trenches: Choline-based leveler containing two quaternary ammoniums[J]. Electrochimica Acta, 2015, 163: 174-181.

[58] Lyu J, Zhao X, Jie X, et al. Fatty acid quaternary ammonium surfactants based on renewable resources as a leveler for copper electroplating[J]. Chem Electro Chem, 2019, 6(13): 3254-3263.

[59] Meng Y, Zhou M, Huang W, et al. Benzyl-containing quaternary ammonium salt as a new leveling agent for microporous copper plating[J]. Chinese Journal of Electrochemistry, 2022, 429: 141013.

相似文献/References:

[1]刘 玮,安成强*,郝建军,等.钼酸钠对AZ91D镁合金钒/锆复合转化膜性能的影响[J].电镀与精饰,2019,(8):10.[doi:10.3969/j.issn.1001-3849.2019.08.003]
 LIU Wei,AN Chengqiang*,HAO Jianjun,et al.Effect of Na2MoO4 on Properties of Vanadium/Zirconate Conversion Coating on AZ91D Magnesium Alloy[J].Plating & Finishing,2019,(12):10.[doi:10.3969/j.issn.1001-3849.2019.08.003]
[2]徐振邦,陆振涛,柯喜敏,等.铝合金电子元器件的表面涂层与耐蚀性能研究[J].电镀与精饰,2019,(10):9.[doi:10.3969/j.issn.1001-3849.2019.10.003]
 XU Zhenbang,LU Zhentao,KE Ximin,et al.Study on Surface Coating and Corrosion Resistance of Aluminum Alloy Electronic Components[J].Plating & Finishing,2019,(12):9.[doi:10.3969/j.issn.1001-3849.2019.10.003]
[3]张玉清,陈同彩?,王春霞,等.添加剂对无氰镀镉工艺性能的影响[J].电镀与精饰,2021,(8):16.[doi:10.3969/j.issn.1001-3849.2021.08.004]
 ZHANG Yuqing,CHEN Tongcai,WANG Chunxia,et al.Effect of Additives on the Performance of Cyanide-Free Cadmium Plating[J].Plating & Finishing,2021,(12):16.[doi:10.3969/j.issn.1001-3849.2021.08.004]
[4]周苗淼,张 雨,沈喜训,等.芯片电镀铜添加剂的研究进展[J].电镀与精饰,2022,(2):60.[doi:10.3969/j.issn.1001-3849.2022.02.013]
 ZHOU Miaomiao,ZHANG Yu,SHEN Xixun,et al.Research Progress of the Copper Electroplating Additives in Chip Manufacturing[J].Plating & Finishing,2022,(12):60.[doi:10.3969/j.issn.1001-3849.2022.02.013]
[5]邱 媛*,元 泉,杨志业,等.添加剂对HEDP镀铜溶液性能的影响[J].电镀与精饰,2022,(5):33.[doi:10.3969/j.issn.1001-3849.2022.05.006]
 QIU Yuan*,YUAN Quan,YANG Zhiye,et al.Effects of Additive on the Properties of HEDP Copper Plating Solution[J].Plating & Finishing,2022,(12):33.[doi:10.3969/j.issn.1001-3849.2022.05.006]
[6]朱金海*,蒋发正,王柯淇. 添加剂对建筑6063铝型材表面转化膜耐蚀性能的影响 [J].电镀与精饰,2022,(10):17.[doi:10.3969/j.issn.1001-3849.2022.10.003]
 ZHU Jinhai*,JIANG Fazheng,WANG Keqi.Effect of Additives on Corrosion Resistance of Conversion Coating on 6063 Aluminum Profiles[J].Plating & Finishing,2022,(12):17.[doi:10.3969/j.issn.1001-3849.2022.10.003]
[7]向 静,阮海波*,王 翀,等.添加剂竞争吸附机理研究及通孔电镀应用[J].电镀与精饰,2022,(11):85.[doi:10.3969/j.issn.1001-3849.2022.11.015]
 XIANG Jing,RUAN Haibo*,WANG Chong,et al.Study on Competitive Adsorption Mechanism of Additives and Its Application of Though Holes Plating[J].Plating & Finishing,2022,(12):85.[doi:10.3969/j.issn.1001-3849.2022.11.015]
[8]张锦园,张菁丽,白忠波,等.电解铜箔用钛阳极涂层的研究现状[J].电镀与精饰,2023,(12):95.[doi:doi : 10.3969/j.issn.1001-3849.2023.12.014]
 Zhang Jinyuan,Zhang Jingli,Bai Zhongbo,et al.Research status of titanium anode coating for electrolytic copper foil[J].Plating & Finishing,2023,(12):95.[doi:doi : 10.3969/j.issn.1001-3849.2023.12.014]
[9]彭雪嵩,由宏伟,李兰晨,等.粗化工艺对电解铜箔抗剥离强度和劣化率的影响[J].电镀与精饰,2024,(3):95.[doi:10.3969/j.issn.1001-3849.2024.03.014]
 Peng Xuesong,You Hongwei,Li Lanchen,et al.The influence of coarsening process on the anti-peeling strength and degradation rate of electrolytic copper foil?/html>[J].Plating & Finishing,2024,(12):95.[doi:10.3969/j.issn.1001-3849.2024.03.014]
[10]樊斌锋,王丽娜*,王庆福,等.新型添加剂提高锂电铜箔高温延伸率的研究[J].电镀与精饰,2024,(3):108.[doi:10.3969/j.issn.1001-3849.2024.03.016]
 Fan Binfeng,Wang Lina*,Wang Qingfu,et al.Study on improving the elongation of lithium copper foil with new additives at high temperature[J].Plating & Finishing,2024,(12):108.[doi:10.3969/j.issn.1001-3849.2024.03.016]
[11]代超熠,唐先忠,何 为,等.电解铜箔添加剂的研究进展[J].电镀与精饰,2024,(2):79.[doi:10.3969/j.issn.1001-3849.2024.02.011]
 Tang Yao,hen Yuanming *.Research progress of electrolytic copper foil additives[J].Plating & Finishing,2024,(12):79.[doi:10.3969/j.issn.1001-3849.2024.02.011]
[12]张锦园,张 杰,白忠波,等.硫酸钛-钨酸钠复合添加剂对电解铜箔后处理形貌及抗剥离强度的影响[J].电镀与精饰,2024,(5):101.[doi:10.3969/j.issn.1001-3849.2024.05.014]
 Zhang Jinyuan,Zhang Jie,Bai Zhongbo,et al.Effect of titanium sulfate and sodium tungstate composite additive on morphology and performance of electrolytic copper foil posttreatment?/html>[J].Plating & Finishing,2024,(12):101.[doi:10.3969/j.issn.1001-3849.2024.05.014]
[13]王庆福,王丽娜,樊斌锋,等.doi: 10.3969/j.issn.1001-3849.2025.01.001噻唑及氨基脲衍生物与氯离子作用于电沉积铜的研究[J].电镀与精饰,2025,(01):1.
 Wang Qingfu,Wang Lina*,Fan Binfeng,et al.Study on the interaction between thiazole and aminourea derivatives and chloride ions in the electrodeposition of copper[J].Plating & Finishing,2025,(12):1.

备注/Memo

收稿日期: 2022-11-01 修回日期: 2022-11-17 作者简介: 程庆( 1996 —),男,博士研究生, email : 364429831@qq.com * 通信作者: 潘钦敏, email : panqm@hit.edu.cn?/html>

更新日期/Last Update: 2022-12-16