CHENG Qing,LI Ning,PAN Qinmin*,et al.Research Progress and Application Status of Electrolytic Copper Foil Additives[J].Plating & Finishing,2022,(12):69-79.[doi:10.3969/j.issn.1001-3849.2022.12.010]
电解铜箔添加剂的研究进展及应用现状
- Title:
- Research Progress and Application Status of Electrolytic Copper Foil Additives
- Keywords:
- electrolytic Cu foil ; additive ; synergy ; tensile strength ; elongation
- 分类号:
- TQ153.2
- 文献标志码:
- A
- 摘要:
- 随着锂离子电池用阴极铜箔对其性能要求的提高,迫切需要制造出厚度在 6 μ m 以下、抗拉强度在 300~350 MPa 同时延伸率在 10 % 以上的双光铜箔来满足锂电池的需要。已有的研究发现,通过向电解液中添加适合的添加剂可有效提升铜箔的各项性能。阐述了三种有机添加剂及 Cl - 在铜沉积过程中的作用,又对不同添加剂之间产生的协同作用进行了归纳。因此,合理利用各类添加剂之间的协同作用,可有效控制铜箔性能,为设计组合添加剂提供了思路与依据。
- Abstract:
- : With the improvement of performance requirements for cathode Cu foils used in lithium ion batteries , it is expected to produce dual-optical Cu foils with thickness of less than 6 μ m , tensile strength of 300-350 MPa and elongation of more than 10% to meet the needs of lithium ion batteries. Previous studies have found that the properties of copper foil can be effectively improved by adding appropriate additives to the electrolyte. The roles of three organic additives and Cl - in copper deposition are described. Synergies between different additives are induced. Rational use of the synergistic effect of various additives can effectively control the properties of copper foil , which provides ideas and basis for the design of composite additives.
参考文献/References:
[1] Wang C, Yuan W, Chen Y, et al. Plowing-extrusion processes and performance of functional surface structures of copper current collectors for Li-ion batteries[J]. Nanomanufacturing and Metrology, 2022(2): 1-18.
[2] Shin D J, Kim Y K, Yoon J M, et al. Discoloration resistance of electrolytic copper foil following 1, 2, 3-benzotriazole surface treatment with sodium molybdate[J]. Coatings, 2018, 8(12): 427.
[3] Pavithra C L P, Sarada B V, Rajulapati K V, et al. Controllable crystallographic texture in copper foils exhibiting enhanced mechanical and electrical properties by pulse reverse electrodeposition[J]. Crystal Growth & Design, 2015, 15(9): 4448-4458.
[4] Chan P F, Ren R H, Wen S I, et al. Effects of additives and convection on Cu foil fabrication with a low surface roughness[J]. Journal of the Electrochemical Society, 2017, 164(9): D660.
[5] Wang X, Liu X, Shi L, et al. Characteristic and formation mechanism of matt surface of double-rolled copper foil[J]. Journal of Materials Processing Technology, 2015, 216: 463-471.
[6] Kurihara H, Kondo K, Okamoto Y. Effect of titanium cathode surface condition on initial copper deposition during electrolytic fabrication of copper foil[J]. Journal of Chemical Engineering of Japan, 2010, 43(7): 612-617.
[7] Li Y, Huang G, Yin X, et al. Effect of copper ion concentration on microstructure and mechanical properties of electrolytic copper foil[C]//IOP Conference Series: Materials Science and Engineering. London: IOP Publishing, 2018, 381(1): 012166.
[8] Zhang J, Chen H, Fan B, et al. Study on the relationship between crystal plane orientation and strength of electrolytic copper foil[J]. Journal of Alloys and Compounds, 2021, 884: 161044.
[9] Balasubramanian A, Srikumar D S, Raja G, et al. Effect of pulse parameter on pulsed electrodeposition of copper on stainless steel[J]. Surface Engineering, 2009, 25(5): 389-392.
[10] Shu J, Shui M, Huang F, et al. Comparative study on surface behaviors of copper current collector in electrolyte for Li-ion batteries[J]. Electrochimica Acta, 2011, 56(8): 3006-3014.
[11] Woo T G, Park J J, Park I S. Initial behavior of additives and mechanical properties of copper foils on high current density[J]. Korean Journal of Metals and Materials, 2021, 59(5): 304-313.
[12] Gu C, Xu H, Zhang T Y. Fabrication of high aspect ratio through-wafer copper interconnects by reverse pulse electroplating[J]. Journal of Micromechanics and Microengineering, 2009, 19(6): 065011.
[13] Li S, Zhu Q, Zheng B, et al. Nano-scale twinned Cu with ultrahigh strength prepared by direct current electrodeposition[J]. Materials Science and Engineering: A, 2019, 758: 1-6.
[14] Chan T C, Chueh Y L, Liao C N. Manipulating the crystallographic texture of nanotwinned Cu films by electrodeposition[J]. Crystal Growth & Design, 2011, 11(11): 4970-4974.
[15] Cui W. Effect and Interactions of Commercial Additives and Chloride Ion in Copper Electrowinning[M]. Rolla: Missouri University of Science and Technology, 2014.
[16] Song J M, Zou Y S, Kuo C C, et al. Orientation dependence of the electrochemical corrosion properties of electrodeposited Cu foils[J]. Corrosion Science, 2013, 74: 223-231.
[17] Vanfleteren J, Gonzalez M, Bossuyt F, et al. Printed circuit board technology inspired stretchable circuits[J]. MRS Bulletin, 2012, 37(3): 254-260.
[18] Wang Q, Peng Y, Mou Y, et al. Promotion of high-speed copper-filling performance for interconnections with increasing aspect-ratio using compound additives[J]. Micromachines, 2022, 13(9): 1539.
[19] Lai Z, Wang S, Wang C, et al. A comparison of typical additives for copper electroplating based on theoretical computation[J]. Computational Materials Science, 2018, 147: 95-102.
[20] Zhi C C. Effects of Thiols and Their Aging on Copper Electrodeposition for ULSI Interconnects[D]. Portland: Oregon Health & Science University, 2002.
[21] Wang W, Li Y B, Li Y L. Invalidating mechanism of bis-(3-sulfopropyl)-disulfide (SPS) during copper via-filling process[J]. Applied Surface Science, 2009, 255(8): 4389-4392.
[22] Lee C H, Lee S C, Kim J J. Bottom-up filling in Cu electroless deposition using bis-(3-sulfopropyl)-disulfide (SPS)[J]. Electrochimica Acta, 2005, 50(16-17): 3563-3568.
[23] Nagayama T, Yoshida H, Shohji I. Effect of additives in an electrolyte on mechanical properties of electrolytic copper foil[C]//International Electronic Packaging Technical Conference and Exhibition. New York: American Society of Mechanical Engineers, 2013, :73172.
[24] Zhang W, Lu X, Liu Y, et al. Synergistic effect of ethylene thiourea and bis-(3-sulfopropyl)-disulfide on acid Cu electrodeposition[J]. Journal of the Electrochemical Society, 2007, 154(10): D526.
[25] Yin L, Pan J, Leygraf C, et al. Experimental and simulation investigations of copper reduction mechanism with and without addition of SPS[J]. Journal of the Electrochemical Society, 2018, 165(13): D604.
[26] Vereecken P M, Binstead R A, Deligianni H, et al. The chemistry of additives in damascene copper plating[J]. IBM Journal of Research and Development, 2005, 49(1): 3-18.
[27] 樊小伟 . 超薄电解铜箔组织结构与力学性能调控及其表面处理技术研究 [D]. 赣州 : 江西理工大学 , 2021.
[28] Lai Z, Wang S, Wang C, et al. Computational analysis and experimental evidence of two typical levelers for acid copper electroplating[J]. Electrochimica Acta, 2018, 273: 318-326.
[29] Yu R, Liu Q, Qiu G, et al. Inhibition behavior of some new mixed additives upon copper electrowinning[J]. Transactions of Nonferrous Metals Society of China, 2008, 18(5): 1280-1284.
[30] Safizadeh F, Lafront A M, Ghali E, et al. Monitoring the quality of copper deposition by statistical and frequency analyses of electrochemical noise[J]. Hydrometallurgy, 2010, 100(3-4): 87-94.
[31] Wang C, Zhang J, Yang P, et al. Electrochemical behaviors of Janus green B in through-hole copper electroplating: An insight by experiment and density functional theory calculation using Safranine T as a comparison[J]. Electrochimica Acta, 2013, 92: 356-364.
[32] Pan Y, Liu Y, Lu X, et al. The role of hydroxyethyl cellulose (HEC) in the chemical mechanical planarization of copper[J]. Journal of the Electrochemical Society, 2012, 159(3): H329.
[33] Sun M, O’Keefe T J. The effect of additives on the nucleation and growth of copper onto stainless steel cathodes[J]. Metallurgical Transactions B, 1992, 23(5): 591-599.
[34] Turner D R, Johnson G R. The effect of some addition agents on the kinetics of copper electrodeposition from a sulfate solution: I. Cathode potential‐current density relation[J]. Journal of the Electrochemical Society, 1962, 109(9): 798.
[35] Meudre C, Ricq L, Hihn J Y, et al. Adsorption of gelatin during electrodeposition of copper and tin-copper alloys from acid sulfate electrolyte[J]. Surface and Coatings Technology, 2014, 252: 93-101.
[36] Chang T, Jin Y, Wen L, et al. Synergistic effects of gelatin and convection on copper foil electrodeposition[J]. Electrochimica Acta, 2016, 211: 245-254.
[37] 余威懿 . 锂离子电池用电解铜箔的制备工艺与性能研究 [D]. 哈尔滨 : 哈尔滨工业大学 , 2019.
[38] Gallaway J W, West A C. PEG, PPG, and their triblock copolymers as suppressors in copper electroplating[J]. Journal of the Electrochemical Society, 2008, 155(10): D632.
[39] Feng Z V, Li X, Gewirth A A. Inhibition due to the interaction of polyethylene glycol, chloride, and copper in plating baths: A surface-enhanced Raman study[J]. The Journal of Physical Chemistry B, 2003, 107(35): 9415-9423.
[40] Yokoi M, Konishi S, Hayashi T. Adsorption behavior of polyoxyethyleneglycole on the copper surface in an acid copper sulfate bath[J]. Denki Kagaku oyobi Kogyo Butsuri Kagaku, 1984, 52(4): 218-223.
[41] Schmidt R, Knaup J M, von Horsten H F. Computational investigation of the adsorption of polyalkylene glycols on copper surfaces for copper electrodeposition[J]. Advanced Theory and Simulations, 2020, 3(1): 1900160.
[42] Lin C C, Yen C H, Lin S C, et al. Interactive effects of additives and electrolyte flow rate on the microstructure of electrodeposited copper foils[J]. Journal of the Electrochemical Society, 2017, 164(13): D810.
[43] Zhang Y, An M, Yang P, et al. Recent advances in electroplating of through-hole copper interconnection[J]. Electrocatalysis, 2021, 12(6): 619-627.
[44] Song S J, Choi S R, Kim J G, et al. Effect of molecular weight of polyethylene glycol on copper electrodeposition in the presence of bis-3-sulfopropyl-disulfide[J]. International Journal of Electrochemical Science, 2016, 151: 10067-10079.
[45] Dow W P, Yen M Y, Lin W B, et al. Influence of molecular weight of polyethylene glycol on microvia filling by copper electroplating[J]. Journal of the Electrochemical Society, 2005, 152(11): C769.
[46] Pasquale M A, Gassa L M, Arvia A J. Copper electrodeposition from an acidic plating bath containing accelerating and inhibiting organic additives[J]. Electrochimica Acta, 2008, 53(20): 5891-5904.
[47] Woo T G, Park I S, Seol K W. Effect of additives on the elongation and surface properties of copper foils[J]. Electronic Materials Letters, 2013, 9(3): 341-345.
[48] Wang W, Li Y B. Effect of Cl - on the adsorption-desorption behavior of PEG[J]. Journal of the Electrochemical Society, 2008, 155(4): D263.
[49] Sun Y, Pan J, Liu L, et al. Improvement of performance stability of electrolytic copper foils by bi-component additives[J]. Journal of Applied Electrochemistry, 2022: 1-12.
[50] Lakshmanan V I, Mackinnon D J, Brannen J M. The effect of chloride ion in the electrowinning of copper[J]. Journal of Applied Electrochemistry, 1977, 7(1): 81-90.
[51] Ren P, An M, Yang P, et al. Revealing the acceleration effect of SPS and Cl - on copper surface: Instantaneous nucleation and multi-step energy change[J]. Applied Surface Science, 2022, 583: 152523.
[52] Wang S P, Wei K X, Wei W, et al. Enhancing surface roughness and tensile strength of electrodeposited copper foils by composite additives[J]. Physica Status Solidi (A), 2022, 219(5): 2100735.
[53] Veilleux B, Lafront A M, Ghali E. Influence of gelatin on deposit morphology during copper electrorefining using scaled industrial cells[J]. Canadian Metallurgical Quarterly, 2002, 41(1): 47-62.
[54] Feng Z V, Li X, Gewirth A A. Inhibition due to the interaction of polyethylene glycol, chloride, and copper in plating baths: A surface-enhanced Raman study[J]. The Journal of Physical Chemistry B, 2003, 107(35): 9415-9423.
[55] Lai Z, Wang C, Huang Y, et al. Temperature-dependent inhibition of PEG in acid copper plating: Theoretical analysis and experiment evidence[J]. Materials Today Communications, 2020, 24: 100973.
[56] 朱若林 , 宋言 , 代泽宇 , 等 . 骨胶和聚二硫二丙烷磺酸钠对厚电解铜箔性能的影响 [J]. 电镀与涂饰 , 2021, 40(13): 1027-1030.
[57] Kim M J, Seo Y, Kim H C, et al. Galvanostatic bottom-up filling of TSV-like trenches: Choline-based leveler containing two quaternary ammoniums[J]. Electrochimica Acta, 2015, 163: 174-181.
[58] Lyu J, Zhao X, Jie X, et al. Fatty acid quaternary ammonium surfactants based on renewable resources as a leveler for copper electroplating[J]. Chem Electro Chem, 2019, 6(13): 3254-3263.
[59] Meng Y, Zhou M, Huang W, et al. Benzyl-containing quaternary ammonium salt as a new leveling agent for microporous copper plating[J]. Chinese Journal of Electrochemistry, 2022, 429: 141013.
相似文献/References:
[1]刘 玮,安成强*,郝建军,等.钼酸钠对AZ91D镁合金钒/锆复合转化膜性能的影响[J].电镀与精饰,2019,(8):10.[doi:10.3969/j.issn.1001-3849.2019.08.003]
LIU Wei,AN Chengqiang*,HAO Jianjun,et al.Effect of Na2MoO4 on Properties of Vanadium/Zirconate Conversion Coating on AZ91D Magnesium Alloy[J].Plating & Finishing,2019,(12):10.[doi:10.3969/j.issn.1001-3849.2019.08.003]
[2]徐振邦,陆振涛,柯喜敏,等.铝合金电子元器件的表面涂层与耐蚀性能研究[J].电镀与精饰,2019,(10):9.[doi:10.3969/j.issn.1001-3849.2019.10.003]
XU Zhenbang,LU Zhentao,KE Ximin,et al.Study on Surface Coating and Corrosion Resistance of Aluminum Alloy Electronic Components[J].Plating & Finishing,2019,(12):9.[doi:10.3969/j.issn.1001-3849.2019.10.003]
[3]张玉清,陈同彩?,王春霞,等.添加剂对无氰镀镉工艺性能的影响[J].电镀与精饰,2021,(8):16.[doi:10.3969/j.issn.1001-3849.2021.08.004]
ZHANG Yuqing,CHEN Tongcai,WANG Chunxia,et al.Effect of Additives on the Performance of Cyanide-Free Cadmium Plating[J].Plating & Finishing,2021,(12):16.[doi:10.3969/j.issn.1001-3849.2021.08.004]
[4]周苗淼,张 雨,沈喜训,等.芯片电镀铜添加剂的研究进展[J].电镀与精饰,2022,(2):60.[doi:10.3969/j.issn.1001-3849.2022.02.013]
ZHOU Miaomiao,ZHANG Yu,SHEN Xixun,et al.Research Progress of the Copper Electroplating Additives in Chip Manufacturing[J].Plating & Finishing,2022,(12):60.[doi:10.3969/j.issn.1001-3849.2022.02.013]
[5]邱 媛*,元 泉,杨志业,等.添加剂对HEDP镀铜溶液性能的影响[J].电镀与精饰,2022,(5):33.[doi:10.3969/j.issn.1001-3849.2022.05.006]
QIU Yuan*,YUAN Quan,YANG Zhiye,et al.Effects of Additive on the Properties of HEDP Copper Plating Solution[J].Plating & Finishing,2022,(12):33.[doi:10.3969/j.issn.1001-3849.2022.05.006]
[6]朱金海*,蒋发正,王柯淇. 添加剂对建筑6063铝型材表面转化膜耐蚀性能的影响 [J].电镀与精饰,2022,(10):17.[doi:10.3969/j.issn.1001-3849.2022.10.003]
ZHU Jinhai*,JIANG Fazheng,WANG Keqi.Effect of Additives on Corrosion Resistance of Conversion Coating on 6063 Aluminum Profiles[J].Plating & Finishing,2022,(12):17.[doi:10.3969/j.issn.1001-3849.2022.10.003]
[7]向 静,阮海波*,王 翀,等.添加剂竞争吸附机理研究及通孔电镀应用[J].电镀与精饰,2022,(11):85.[doi:10.3969/j.issn.1001-3849.2022.11.015]
XIANG Jing,RUAN Haibo*,WANG Chong,et al.Study on Competitive Adsorption Mechanism of Additives and Its Application of Though Holes Plating[J].Plating & Finishing,2022,(12):85.[doi:10.3969/j.issn.1001-3849.2022.11.015]
[8]张锦园,张菁丽,白忠波,等.电解铜箔用钛阳极涂层的研究现状[J].电镀与精饰,2023,(12):95.[doi:doi : 10.3969/j.issn.1001-3849.2023.12.014]
Zhang Jinyuan,Zhang Jingli,Bai Zhongbo,et al.Research status of titanium anode coating for electrolytic copper foil[J].Plating & Finishing,2023,(12):95.[doi:doi : 10.3969/j.issn.1001-3849.2023.12.014]
[9]彭雪嵩,由宏伟,李兰晨,等.粗化工艺对电解铜箔抗剥离强度和劣化率的影响[J].电镀与精饰,2024,(3):95.[doi:10.3969/j.issn.1001-3849.2024.03.014]
Peng Xuesong,You Hongwei,Li Lanchen,et al.The influence of coarsening process on the anti-peeling strength and degradation rate of electrolytic copper foil?/html>[J].Plating & Finishing,2024,(12):95.[doi:10.3969/j.issn.1001-3849.2024.03.014]
[10]樊斌锋,王丽娜*,王庆福,等.新型添加剂提高锂电铜箔高温延伸率的研究[J].电镀与精饰,2024,(3):108.[doi:10.3969/j.issn.1001-3849.2024.03.016]
Fan Binfeng,Wang Lina*,Wang Qingfu,et al.Study on improving the elongation of lithium copper foil with new additives at high temperature[J].Plating & Finishing,2024,(12):108.[doi:10.3969/j.issn.1001-3849.2024.03.016]
[11]代超熠,唐先忠,何 为,等.电解铜箔添加剂的研究进展[J].电镀与精饰,2024,(2):79.[doi:10.3969/j.issn.1001-3849.2024.02.011]
Tang Yao,hen Yuanming *.Research progress of electrolytic copper foil additives[J].Plating & Finishing,2024,(12):79.[doi:10.3969/j.issn.1001-3849.2024.02.011]
[12]张锦园,张 杰,白忠波,等.硫酸钛-钨酸钠复合添加剂对电解铜箔后处理形貌及抗剥离强度的影响[J].电镀与精饰,2024,(5):101.[doi:10.3969/j.issn.1001-3849.2024.05.014]
Zhang Jinyuan,Zhang Jie,Bai Zhongbo,et al.Effect of titanium sulfate and sodium tungstate composite additive on morphology and performance of electrolytic copper foil posttreatment?/html>[J].Plating & Finishing,2024,(12):101.[doi:10.3969/j.issn.1001-3849.2024.05.014]
[13]王庆福,王丽娜,樊斌锋,等.doi: 10.3969/j.issn.1001-3849.2025.01.001噻唑及氨基脲衍生物与氯离子作用于电沉积铜的研究[J].电镀与精饰,2025,(01):1.
Wang Qingfu,Wang Lina*,Fan Binfeng,et al.Study on the interaction between thiazole and aminourea derivatives and chloride ions in the electrodeposition of copper[J].Plating & Finishing,2025,(12):1.
备注/Memo
收稿日期: 2022-11-01 修回日期: 2022-11-17 作者简介: 程庆( 1996 —),男,博士研究生, email : 364429831@qq.com * 通信作者: 潘钦敏, email : panqm@hit.edu.cn?/html>