LI Pengfei*,YAN Wuyue.Electroless Plating of Ni-Co-P/PTFE Composite Coating on Power Plant Cooling Water Pipe and Its Anti-fouling Performance and Corrosion Resistance[J].Plating & Finishing,2021,(1):18-24.[doi:10.3969/j.issn.1001-3849.2021.01.0040]
电厂冷却水管化学镀Ni-Co-P/PTFE复合镀层及其防垢耐蚀性能
- Title:
- Electroless Plating of Ni-Co-P/PTFE Composite Coating on Power Plant Cooling Water Pipe and Its Anti-fouling Performance and Corrosion Resistance
- 文献标志码:
- A
- 摘要:
- 在电厂冷却水管常用的20#钢表面化学镀Ni-Co-P镀层,并以沉积速率作为指标,通过单因素实验得到化学镀Ni-Co-P镀层较优的溶液成分和工艺条件。在此基础上,通过向溶液中添加PTFE制备出Ni-Co-P/PTFE复合镀层,进一步研究了PTFE浓度对Ni-Co-P/PTFE复合镀层防垢耐蚀性能的影响。结果表明,随着PTFE浓度增加,Ni-Co-P/PTFE复合镀层的生垢速率和平均腐蚀速率都呈先减小后增大的趋势,与PTFE质量分数先升高后下降有关联性。PTFE浓度为25 mL/L时,Ni-Co-P/PTFE复合镀层的生垢速率和平均腐蚀速率均最小,依次为1.66×10-2 g/(m2·h)和1.85×10-5 g/(cm2·h)。该复合镀层经24 h生垢实验后表面的污垢呈稀疏分布,覆盖面积小,经84 h浸泡实验后表面的蚀坑相对较小,表现出较好的防垢耐蚀性能。
- Abstract:
- Ni-Co-P coating was prepared by electroless plating on the surface of 20# steel commonly used in power plant cooling water pipes. The deposition rate was taken as the index, and the optimal solution component and process conditions for electroless plating of Ni-Co-P coating were obtained by single factor experiment. On this basis, Ni-Co-P/PTFE composite coating was prepared by adding PTFE in the solution and the influence of PTFE concentration on the anti-fouling performance and corrosion resistance of Ni-Co-P/PTFE composite coating was further studied. The results showed that with the increase of PTFE concentration, the fouling rate and average corrosion rate of Ni-Co-P/PTFE composite coating both decreased first and then increased, which was related to the variation tendency of the mass fraction of PTFE. When PTFE concentration was 25 mL/L, the Ni-Co-P/PTFE composite coating with the minimum fouling rate and average corrosion rate, which was 1.66×10-2 g/(m2·h) and 1.85×10-5 g/(cm2·h) respectively. The fouling on surface of the composite coating was sparse and the coverage area was small after 24 hours of scaling experiment, and the erosion pits on surface of the composite coating was relatively small after 84 h immersion experiment, showing better anti-fouling and corrosion resistance performance.
参考文献/References:
[1] 徐萌. 火电厂凝汽器冷却水管结垢的危害及机器人清洗技术应用[J]. 低碳世界, 2016(30): 61-62.
Xu M. The harm of scaling of condenser Cooling water pipe in thermal power plant and the application of robot cleaning technology[J]. Low-Carbon World, 2016(30): 61-62 (in Chinese).
[2] Bosire G O, Ngila J C, Mbugua J M, et al. Predictive complexation models of the impact of natural organic matter and cations on scaling in cooling water pipes: a case study of power generation plants in south africa[J]. Physics and Chemistry of the Earth, Parts A/B/C, 2014(76-78): 35-41.
[3] 黄元平, 武霖, 徐志明. 电厂换热设备微生物污垢沉积与腐蚀实验[J]. 热力发电, 2015, 44(6): 111-116.
Huang Y P, Wu L, Xu Z M. Experimental study of microbial fouling and corrosion on heat exchangers surface in power plants[J]. Thermal Power Generation, 2015, 44(6): 111-116 (in Chinese).
[4] 杨烨, 何骁. LNG工厂停产状态下循环冷却水腐蚀性研究[J]. 石油与天然气化工, 2016, 45(1): 102-106.
Yang Y, He X. Study on the corrosivity of the recirculating cooling water during shutdown in LNG plant[J]. Chemical Engineering of Oil and Gas, 2016, 45(1): 102-106 (in Chinese).
[5] Chidambaram S. Localized pitting corrosion of API 5L grade a pipe used in industrial fire water piping applications[J]. Engineering Failure Analysis, 2018(92): 405-417.
[6] Huang X N, Pieper K J, Cooper H K, et al. Corrosion of upstream metal plumbing components impact downstream pipe surface deposits and degradation[J]. Chemosphere, 2019(236): 124-139.
[7] 赵中华, 邢晓凯, 周恒, 等. 表面特性对污垢结垢行为影响研究综述[J]. 石油化工高等学校学报, 2018, 31(2): 89-95.
Zhao Z H, Xing X K, Zhou H, et al. Review of the effect of surface characteristics on fouling behavior[J]. Journal of Petrochemical Universities, 2018, 31(2): 89-95 (in Chinese).
[8] Ren L, Cheng Y H, Feng S Z, et al. Experimental study on corrosion-fouling relationship of Ni-W-P composite coating surface of heat exchanger[J]. Surface Topography Metrology and Properties, 2019, 7(1): 672-683.
[9] 程延海, 侯庆强, 杨金勇, 等. 钨含量对Ni-W-P镀层抗垢性能的影响[J]. 稀有金属材料与工程, 2016, 45(8): 1931-1937.
Cheng Y H, Hou Q Q, Yang J Y, et al. Effect of tungsten addition on the anti-fouling property of the electroless Ni-W-P deposits[J]. Rare Metal Materials and Engineering, 2016, 45(8): 1931-1937 (in Chinese).
[10] 朱宸煜, 许晓静, 王浩, 等. Ni-Sn-P复合镀层的组织结构与抗垢性能研究[J]. 腐蚀科学与防护技术, 2019, 31(3): 257-262.
Zhu C Y, Xu X J, Wang H, et al. Microstructure and property of Ni-Sn-P composite coatings on carbon steel Q235[J]. Corrosion Science and Protection Technology, 2019, 31(3): 257-262 (in Chinese).
[11] 郭思琴. 化学镀Ni-P镀层特征及性能的研究[D]. 太原: 太原理工大学, 2017.
[12] 黄晓梅, 田川, 李阳. 不锈钢化学镀Ni-Mo-P沉积速率的研究[J]. 电镀与环保, 2016, 36(3): 29-32.
Huang X M, Tian C, Li Y. Study on the deposition rate of electroless Ni-Mo-P plating on stainless steel[J]. Electroplating & Pollution Control, 2016, 36(3): 29-32 (in Chinese).
[13] Nouri N M, Bakhsh M S, Bagheri R. Robust superhydrophobic surface with polytetrafluoroethylene (PTFE), micro sized aluminum particles and SiO2 nano-particles[J]. Modares Mechanical Engineering, 2015, 15(11): 26-32.
相似文献/References:
[1]蒲 帅*,张 进,黎 帅.化学镀不溶性颗粒分散性的研究进展[J].电镀与精饰,2019,(8):29.[doi:10.3969/j.issn.1001-3849.2019.08.007]
PU Shuai*,ZHANG Jin,LI Shuai.Research Progress on the Dispersion of Insoluble Particles of Electroless Plating[J].Plating & Finishing,2019,(1):29.[doi:10.3969/j.issn.1001-3849.2019.08.007]
[2]赵 涛,张德忠,毛祖国.氯化钯实验评价化学镀镍溶液稳定性的方法与优化[J].电镀与精饰,2019,(10):43.[doi:10.3969/j.issn.1001-3849.2019.10.010]
ZHAO Tao,ZHANG Dezhong,MAO Zuguo.Method and Optimization of Palladium Chloride Test for Evaluating the Stability of Electroless Nickel Plating Solution[J].Plating & Finishing,2019,(1):43.[doi:10.3969/j.issn.1001-3849.2019.10.010]
[3]李 燕,金 文,吕依月,等.螺旋藻基化学镀镍的工艺研究[J].电镀与精饰,2019,(11):22.[doi:10.3969/j.issn.1001-3849.2019.11.006]
LI Yan,JIN Wen,LV Yiyue,et al.Study on Electroless Nickel Plating on Spirulina[J].Plating & Finishing,2019,(1):22.[doi:10.3969/j.issn.1001-3849.2019.11.006]
[4]贾启华,许晓娟*.沉积时间对镁合金化学镀镍的影响[J].电镀与精饰,2019,(12):1.[doi:10.3969/j.issn.1001-3849.2019.12.001]
JIA Qihua,XU Xiaojuan*.Effect of Deposition Time on Direct Electroless Plating of Magnesium Alloys[J].Plating & Finishing,2019,(1):1.[doi:10.3969/j.issn.1001-3849.2019.12.001]
[5]贾启华.超声波辅助化学镀工艺及性能研究[J].电镀与精饰,2020,(3):24.[doi:10.3969/j.issn.1001-3849.2020.03.005]
JIA Qihua.Study on Ultrasound-assisted Electroless Plating Technology and Properties[J].Plating & Finishing,2020,(1):24.[doi:10.3969/j.issn.1001-3849.2020.03.005]
[6]闫 申*,刘 菲.化学镀时间对Ni-Co-P合金镀层性能的影响[J].电镀与精饰,2020,(6):18.[doi:10.3969/j.issn.1001-3849.2020.06.0040]
YAN Shen*,LIU Fei.Effect of Electroless Plating Time on Properties of Ni-Co-P Alloy Coating[J].Plating & Finishing,2020,(1):18.[doi:10.3969/j.issn.1001-3849.2020.06.0040]
[7]谭宇硕*,容旭巍,韩 瀚,等.45钢杆件化学镀Ni-Co-P及Ni-W-P镀层的性能比较[J].电镀与精饰,2020,(9):1.
TAN Yushuo*,RONG Xuwei,HAN Han.Comparison of Properties of Ni-Co-P Coating and Ni-W-P Coating Prepared by Electroless Plating on Surface of 45 Steel Rod-Shaped Parts[J].Plating & Finishing,2020,(1):1.
[8]韩二锋*,姚斌.硝酸镧浓度对汽车模具导柱化学镀Ni-P/PTFE复合镀层性能的影响[J].电镀与精饰,2020,(11):10.[doi:10.3969/j.issn.1001-3849.2020.11.0030]
HAN Erfeng*,YAO Bin.Effect of Concentration of Lanthanum Nitrate on the Properties of Ni-P/PTFE Composite Coatings Prepared by Electroless Plating on Guide Pillar of Automobile Mould[J].Plating & Finishing,2020,(1):10.[doi:10.3969/j.issn.1001-3849.2020.11.0030]
[9]孔 琳,刘品潇*,孔 斌,等.A3钢表面化学镀Ni-P/Ni-Mo-P双层镀层[J].电镀与精饰,2021,(1):25.[doi:10.3969/j.issn.1001-3849.2021.01.0050]
KONG Lin,LIU Pinxiao*,KONG Bin.Electroless Plating of Ni-P/Ni-Mo-P Bilayered Coating on A3 Steel[J].Plating & Finishing,2021,(1):25.[doi:10.3969/j.issn.1001-3849.2021.01.0050]
[10]高 平.钕铁硼化学镀Ni-Mo-P镀层的形貌和耐腐蚀性能[J].电镀与精饰,2021,(4):30.[doi:10.3969/j.issn.1001-3849.2021.04.007]
GAO Ping.Morphology and Corrosion Resistance of Ni-Mo-P Coatings on NdFeB Prepared by Electroless Plating[J].Plating & Finishing,2021,(1):30.[doi:10.3969/j.issn.1001-3849.2021.04.007]
备注/Memo
收稿日期: 2020-08-07;修回日期: 2020-08-30
通信作者: 李鹏飞, email: teacher_li801@163.com
基金项目: 内蒙古自治区教育厅项目(NJZY18273)